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Abstract
Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co- 
detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular 
phenotyping, leading to richer insights into cellular interactions and disease. However, high-plex data can be slower and more costly 
to collect, limiting its applications, especially in clinical settings. We propose a machine learning framework, 7-UP, that can 
computationally generate in silico 40-plex CODEX at single-cell resolution from a standard 7-plex mIF panel by leveraging cellular 
morphology. We demonstrate the usefulness of the imputed biomarkers in accurately classifying cell types and predicting patient 
survival outcomes. Furthermore, 7-UP’s imputations generalize well across samples from different clinical sites and cancer types. 
7-UP opens the possibility of in silico CODEX, making insights from high-plex mIF more widely available.

Significance Statement

Multiplex immunofluorescence imaging is a powerful approach for studying spatial proteomics. However such experimental data are 
still challenging and expensive to generate. In this paper, we propose 7-UP, a machine learning algorithm to computationally generate 
high-resolution immunofluorescence images of up to 40 different antibodies on the same tissue section. 7-UP uses cellular morph
ology and a small number of antibody stains to impute the abundance of the other antibody stains. We demonstrate its applications 
across diverse human tumor samples. 7-UP’s imputations generalize well across samples from different clinical sites and cancer 
types.
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Introduction
The tissue microenvironment (TME) is a complex milieu com
prising many cell types and heterogeneous cell states. 
Common techniques for understanding the TME like mass spec
trometry (1) and flow cytometry (2) allow for bulk measure
ments of many cell biomarkers but discard valuable spatial 
information in the process. Recently, multiplexed molecular 
imaging assays have enabled the quantification of cell types 
and molecules in their native tissue context. Commercial 
multiplex immunofluorescence (mIF) systems are increasingly 

commonplace in clinical diagnostic and prognostic settings (3) 

but are typically limited to quantifying between one and seven 

biomarkers (4).
More recently, mIF techniques such as co-detection by index

ing (CODEX) (5) quantify 40 or more markers in situ, allowing a 

richer and more holistic characterization of the TME and its 

underlying cell types and disease processes. However, CODEX sys

tems are significantly more costly and time-consuming to run 

when compared to most low-plex systems, which limits their 

wider adoption in clinical settings.
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To address this limitation, we introduce 7-UP, a machine learn
ing framework that generates in silico high-plex mIF (30+ bio
markers) from only a panel of seven experimentally measured 
biomarkers. Whereas typical 7-plex measurements can only re
solve up to five to seven distinct cell types (3), using the imputed 
markers from 7-UP enables the identification of up to 16 cell types. 
Moreover, the imputed biomarker expressions can predict com
plex clinical outcomes with accuracy comparable to using experi
mental measurements from CODEX. 7-UP generalizes to new 
cancer types and samples that come from different clinical sites 
than its training data. Our approach highlights a significant 
opportunity to use machine learning toward inferring high- 
dimensional molecular features from commonly available 
low-plex imaging data.

Imputation techniques have been applied to missing data in 
genomics (6–8) and transcriptomics (9, 10) data sets, as well as 
in mass spectrometry and shotgun proteomics (6, 11, 12) data. 
Deep learning has been used to extract morphological and spatial 
features from pathology H&E-stained slides (13–16) and, in turn, 
enabled in silico IHC staining (17) and spatial transcriptomics 
(18). More recently, computational methods have been developed 
for improving cell-type classification in CODEX-acquired data (19) 
and augmenting with spatial information in particular (20). To 
date, our work is the first to demonstrate the effectiveness of 
deep learning–based morphological feature extraction toward 
mIF imputation.

Results
7-UP summary
The 7-UP framework consists of the following pipeline. We first se
lect an optimal panel of seven biomarkers from the full CODEX 
biomarker panel. While the choice of which biomarkers to meas
ure in a 7-plex imaging workflow can depend on clinician prefer
ence and disease subtype, we use a previously validated 
approach, concrete autoencoder (21), for automatically selecting 
informative biomarkers. This approach identified DAPI, CD45RA, 
CD15, pan-cytokeratin (PanCK), HLA-DR, Ki67, and vimentin (“main 
panel” in Table 1), which we use in our main experiments. We add
itionally report results using an alternative panel commonly used 
in immunology (4, 22) consisting of DAPI, CD4, CD15, PanCK, CD8, 
Ki67, and vimentin (“Alternative panel” in Table 1), and the results 
are consistent with the main panel. For comparison, we also re
port the performance of several panels containing completely dis
tinct biomarkers (Table S1). Next, we extract cell-level spatial 

features across each of these seven biomarkers in the CODEX 
data set. To do this, we train a convolutional neural network 
(23) to learn spatial and morphological features from cell image 
patches generated from the full samples. We combine cell-level 
spatial features with average biomarker expression values to train 
a machine learning regression model (24) to impute the expres
sion of the 30+ additional biomarkers (Fig. 1).

To validate the veracity of the 7-UP imputed expressions, we 
use them to predict cell types and patient outcomes. We replace 
CODEX-measured expressions with the 7-UP imputed expressions 
in a k-nearest neighbor (kNN) algorithm used to determine cell 
type ground truth to generate cell type predictions. In turn, these 
predicted cell types are used as input in place of the 
CODEX-measured ground truth cell types in a graph neural net
work (GNN) (25) trained to produce sample-level predictions for 
patient-level survival status, HPV (human papillomavirus) status, 
and recurrence.

Application of 7-UP to head and neck and 
colorectal cancer data sets
Our primary data set consists of 308 samples from 81 patients 
with head and neck squamous cell carcinomas at the University 
of Pittsburgh Medical Center (UPMC-HNC). Three external valid
ation data sets are used: a head and neck squamous cell carcin
omas data set with 38 samples from 11 patients from Stanford 
University (Stanford-HNC) to demonstrate generalization on the 
same disease, a colorectal cancer data set with 292 samples 
from 161 patients from Stanford University (Stanford-CRC) to 
demonstrate generalization to another disease, and a head and 
neck squamous cell carcinomas data set with 112 samples from 
29 patients from Dana Farber Cancer Institute (DFCI-HNC) to 
demonstrate generalization to an additional clinical site. The 
number of samples, patients, coverslips, and total cells in each 
data set is described in Table S2. Phenotype annotations for 
UPMC-HNC are described in Table S3. UPMC-HNC is chosen as 
the primary training and evaluation data set as it contains the lar
gest number of samples, coverslips, and total cells. We evaluate 
our models on held-out coverslips not seen during training to as
sess model robustness to technical artifacts across coverslips.

Concordance of biomarker imputation
7-UP achieves an average Pearson correlation coefficient (PCC) of 
0.534 across all predicted biomarkers in the UPMC-HNC data set 
(Table 1). The predictive performance also holds across an alter
native input panel (PCC of 0.529). Immune-related biomarkers 
like CD4, CD20, and CD45 are most accurately predicted, with 
PCCs above 0.70 (examples shown in Fig. 2).

Predicting cell types from imputed biomarkers
We also measure the reliability of the imputed biomarkers 
by using them for determining cell types since cell type 
identification is a common task in analyses of CODEX data. 
Toward this task, 7-UP achieves an F1 score of 0.727. The full 
CODEX-measured biomarker panel defines the ground truth la
bels in both models.

We examine how accurately the predicted cell types retain lo
cal cell neighborhood structures by comparing the spatial adja
cency matrices (Fig. S1). These were produced by projecting the 
cells into a graph representation described in Zheng et al. (25) 
and then counting the relative frequencies of spatially adjacent 
cells. Comparing the two matrices shows that local clusters of 
cell types are well preserved (root mean square distance of 

Table 1. Performance of 7-UP on the UPMC-HNC data set.

Patchwise 
PCC

Patchwise 
F1

UPMC-HNC data set 33 
biomarkers

16 cell types

7-UP model (seven biomarkers) 0.474 (0.006) 0.667 (0.002)
7-UP model (seven biomarkers +  

morphology) main panel
0.534 (0.009) 0.727 (0.002)

7-UP model (seven biomarkers +  
morphology) alternative panel

0.529 (0.007) 0.739 (0.002)

Biomarker imputation results are reported using the average patchwise PCC. 
Cell type predictions are reported using the patchwise weighted F1 score. The 
first row refers to the model trained without including morphological features 
in the input. The second and third rows refer to the models trained with 
morphological features. The main and alternative panels are described in the 
Materials and Methods section. Numbers in parentheses indicate the 95% 
bootstrapped confidence intervals.
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0.0357). We additionally verify that the predicted cell types closely 
match the true distribution by projecting the predicted and 
CODEX-measured biomarker expressions using UMAP (Uniform 
Manifold Approximation and Projection) (Fig. 2B) and visualizing 
the cell type labels (Fig. 3).

Predicting patient phenotypes from predicted 
cell types
To validate the reliability of the cell types determined by 
7-UP-imputed biomarkers, we use them to predict three patient 
phenotypic outcomes: HPV infection status, primary outcome (sur
vival), and recurrence of disease. This is to demonstrate the useful
ness of the predicted cell types beyond the mean F1 score by 
showing that cell type prediction using imputed biomarkers can 
be robustly used for downstream tasks like survival prediction. 
To this end, we use a graph-based deep learning model (25) trained 
using ground truth cell types from the UPMC-HNC data set to pre
dict these three binary outcomes. To evaluate the veracity of our 
predicted cell types, we replace the CODEX-measured cell types 
used to make the baseline prediction with the predicted cell types 
as input to the model. The results demonstrate that the imputed 
cell types can predict phenotypic outcomes at a level comparable 
to the ground truth labels (Fig. 4).

Cross-site and cross-disease generalization
Finally, we evaluate our model on two head and neck cancer data 
sets from (Stanford-HNC) and DFCI (DFCI-HNC) and a colorectal 
cancer data set (Stanford-CRC). The biomarker imputation and 
cell type prediction performances remain stable (e.g. for 
Stanford-CRC: 0.489 vs. 0.583 PCC and 0.614 vs. 0.605 F1) even 
when evaluated on a different clinical site and cancer type 
(Table 2 and Fig. 5), indicating that the model’s performance is ro
bust when evaluated on unseen data. For each cross-site evalu
ation, a breakdown of PCC per biomarker is visualized in Fig. S2.

Training on only one coverslip
Because highly multiplexed fluorescence imaging platforms like 
CODEX are more resource-intensive than standard fluorescence 
immunochemistry imaging, one might wish to image only one 
coverslip with CODEX and then train a model to impute additional 
biomarkers on other coverslips imaged with a 7-plex system. We 
experiment with only training the imputation model on one 
coverslip (24% of the entire training data) and report that perform
ance from this model retains the same cell type prediction per
formance (Table S4A). Even in this low data regime, the model 
can still robustly impute cell types without sacrificing 
performance.

A

C

E F

D

B

Fig. 1. Overview of the 7-UP Framework. (Panel A) From the full CODEX panel of biomarkers, a concrete autoencoder selects the seven biomarkers that 
are best able to reconstruct the full panel. (Panel B) From a full sample (∼1,000 microns wide), image patches are extracted for each cell: cell only, 
containing the morphology of the cell at 3× scaling, 0.5×, a ∼84-micron neighborhood around the cell, and 1×, a ∼42-micron neighborhood around the cell. 
(Panels C and D) Each cell has 3 patches produced for each of the 7 biomarkers, totaling 21 patches used as input to a deep learning model. This model 
extracts morphological features for each cell, which are combined with the average expressions of the top seven biomarkers to predict the average 
expressions of the remaining CODEX panel biomarkers using a machine learning regression model. (Panel E) The imputed biomarker expressions (from 
Panels C and D) are used in place of the CODEX-generated values in the kNN algorithm used to produce cell-type ground truth. An example predicted 
sample is shown. (Panel F) Using a deep learning model trained to predict phenotypic outcomes (Zheng et. al), the predicted cell types are used in place of 
the ground truth cell types to produce sample-level predictions for survival status, HPV status, and recurrence.
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7-UP leverages cell morphology
Finally, we verify that the deep learning model learns morphology 
features useful for imputing biomarkers for single cells beyond 
the mean expression values. Using only average cell expression 
values as input features, our method achieves an average PCC of 
0.474 across all predicted biomarkers in the UPMC-HNC data set. 
When adding additional morphology features, the performance 
improves to 0.534 PCC (Table 1). Similarly, when determining 
cell types, a model which uses only the average expressions of sev
en biomarkers achieves an average patchwise-weighted F1 score 
of 0.667. In contrast, the model with biomarkers imputed using 
morphology features achieves an F1 score of 0.727.

Additionally, to demonstrate the usefulness of the context 
channels used in the deep learning model, we performed an abla
tion experiment (Table S4B) where we evaluated a model trained 
using the context channels and a model trained without (only us
ing the single-cell image). We observe an improvement (0.016 PCC 
and 0.014 F1) with the inclusion of context channels, indicating 
that features from the cell’s neighborhood are useful in determin
ing information about the cell.

As an example, classification performance on vessel cells in
creases from 0.44 to 0.67 F1 score when including morphological 

features. Of the vessel cells incorrectly classified without morph
ology, 70% were predicted as stromal cells. Figure S3 visualizes ex
amples of cells that were corrected with the inclusion of 
morphology. Though vessel cells and stromal cells share a similar 
protein expression composition (vimentin, aSMA, CollagenIV, and 
CD47), vessel cells uniquely express CD31 and CD34. Indeed, the 
model with morphology more accurately predicts CD31 (PCC: 
0.561 vs. 0.416) and CD34 (PCC: 0.586 vs. 0.429). We can infer 
that the model was able to better predict the expression of these 
two biomarkers with morphological information of the seven bio
markers than with only average expression.

Discussion
A promise of spatial proteomics is to exploit the rich spatial 
information present in TME images, which enables higher- 
dimensional analyses beyond bulk or average protein expressions. 
The capability to infer biomarker co-expression patterns from cell 
morphologies and spatial structures of cell niches in the TME can 
enable CODEX-like insights from a smaller panel of biomarkers.

High-plex immunofluorescence (IF) techniques like CODEX 
enable an unprecedented understanding of TME and tissue 

A

B C

Fig. 2. Biomarker imputation concordance on the UPMC-HNC data set. (Panel A) CODEX-measured versus predicted expressions for three biomarkers: 
CD4, CD20, and CD45. Samples shown have average patchwise PCC scores around the 50th percentile of all samples. (Panel B) A UMAP embedding was 
performed on the biomarkers of an equal sample of CODEX-measured and predicted cells. The first column is labeled by the ground truth cell types 
(legend from Fig. 1E); the second and third columns represent cells that express CD45 and CD20 (labeled by expressions greater than the 75th percentile 
CODEX-measured value). (Panel C) Patchwise PCC across all test samples for each biomarker. The “Exp only” bars represent the performance of a model 
trained only using average expression values as input; the “Exp + Morph” bars represent the performance of a model trained using both average 
expression values and morphology features.
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architecture but have seen limited clinical (diagnostic or prognos
tic) utility due to their cost and data generation times. On the oth
er hand, standard IF or immunostaining workflows, which image 
between one and seven biomarkers, are widely available. 7-plex 
mIF panels are becoming more common in clinical settings. Our 

proposed method aims to unlock the richer TME representations 
available with CODEX by upleveling existing 7-plex data through 
learning biomarker co-expression and morphological patterns.

Even a small subset of biomarkers may contain sufficient signal 
to reconstruct a much larger subset of biomarkers: for instance, 

A

B C

Fig. 3. Cell type predictions closely match CODEX measurements (UPMC-HNC data set). (Panel A) CODEX-measured and predicted cell types are shown 
side-by-side on 25th, 50th, and 75th percentile samples (by patchwise F1 score). (Panel B) Left: confusion matrix between the kNN-determined ground 
truth cell types (rows) and ML imputed cell type (columns). Right: breakdown of patchwise F1 score by cell type. The “Exp only” bars represent the 
performance of a model trained using only average expression values, and the “Exp + Morph” bars represent the performance of a model trained using 
both average expression values and morphological features.

A

B

Fig. 4. Imputed biomarkers are useful for predicting patient phenotypes (UPMC-HNC data set). For reference, the performance of a model trained to 
predict phenotypes using only the seven input biomarker panel was reported as well (“seven biomarkers”). (Panel A) Three phenotypic outcomes using 
imputed vs. CODEX-measured vs. seven biomarkers. AUC score reported (95% bootstrapped confidence interval reported in parentheses). (Panel B) ROC 
curves of three phenotypic outcomes.
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some biomarkers regularly co-express with other biomarkers (e.g. 
CD20 and CD21 in B cells), while others can be inferred from the 
cell’s morphology (e.g. the nucleus and cytokeratin expression of 
a proliferating tumor cell may indicate Ki67 expression). Indeed, 
our results suggest that learning these relationships is useful and 
that the imputed biomarker expressions are reliable enough to be 
used in place of CODEX-measured expressions for the primary 
tasks of resolving cell types and predicting phenotypic outcomes.

The panel selection procedure in Fig. 1A demonstrates one 
method for selecting input biomarkers, which does so by maxi
mizing the average reconstruction accuracy across all other 
CODEX-measured biomarkers. In scenarios where multiplex im
aging data have been previously imaged and collected, 7-UP can 
be deployed directly on the predefined subset of biomarkers, 
thus removing the need for panel selection.

The ability to determine a subset of biomarkers in silico (i) gives 
users immediate access to a larger set of biomarkers beyond what 
has been experimentally measured and (ii) frees up resources to 
measure more novel and biologically relevant biomarkers. Thus, 
in addition to upleveling 7-plex systems, 7-UP can also push 
CODEX systems from ∼40 biomarker measurements to 60 or 
more, enabling even greater cell type differentiation and disease 
characterization.

Limitations
While some biomarkers are imputable with a high degree of con
fidence, others are not as easily predicted. This is a consequence 
of the inherent limitations of a 7-plex panel. Intuitively, increas
ing the panel beyond seven biomarkers would increase the num
ber of strongly predicted biomarkers but would also surpass the 
technical limitation of most clinical multiplex workstations. 
Additionally, since biomarkers are differentially expressed 
based on their unique TME, training in a variety of disease 

Table 2. 7-UP generalizes well to other data sites and disease 
types.

Patchwise PCC Patchwise F1

Stanford-CRC data set 24 biomarkers 16 cell types
with UPMC-HNC model 0.489 (0.024) 0.614 (0.004)
with Stanford-CRC model 0.583 (0.031) 0.605 (0.004)
Stanford-HNC data set 26 biomarkers 18 cell types
with UPMC-HNC model 0.475 (0.005) 0.757 (0.001)
With Stanford-HNC model 0.545 (0.004) 0.773 (0.001)
DFCI-HNC data set 20 biomarkers 21 cell types
with UPMC-HNC model 0.394 (0.016) 0.545 (0.006)
With DFCI-HNC model 0.531 (0.021) 0.590 (0.004)

Imputed biomarker and predicted cell type performance are demonstrated on 
three external validation data sets (Stanford-CRC, Stanford-HNC, and 
DFCI-HNC). The UPMC-HNC model’s performance is reported on each data set, 
along with a reference model that has been trained on the validation data set. 
Metrics are reported with 95% confidence intervals in parentheses.

Fig. 5. Visualization of CODEX-measured and UPMC-HNC model-predicted cell types on three validation data sets. Fiftieth percentile (by F1 score) 
samples are shown, labeled by cell types.
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contexts is key to ensuring generalizability. Picking an inform
ative panel of biomarkers is also an important decision and 
ought to reflect the nature of the disease and TME that one wish
es to understand.

Studies using IF data pose challenges in terms of data valid
ation, noise sources, and interpretative analysis, like cell typing. 
Specific challenges with IF and other tissue stains include the dif
ficulty of cell segmentation; the presence of tissue artifacts such 
as folds, tears, and distortions; and image processing issues 
such as the alignment of tiles or channels. We recognize that 
CODEX and other highly multiplexed IF assays are not exempt 
from these challenges (19).

Our aim in evaluating our model across diverse samples from 
held-out patients, clinical sites, and disease types is in part to in
crease confidence in the underlying consistency in the CODEX 
measurements present across data sets. However, we recognize 
that measurement errors may still be present in mIF data even 
after strict quality control (QC) measures. Despite these systemic 
limitations, we highlight 7-UP’s performance robustness through 
two additional points. First, though error-free cell segmentation 
is an open problem, our manuscript employs a state-of-the-art 
deep learning approach (DeepCell (26)) in order to achieve high- 
performing results. Although segmentation was used to train 
and test the model, we note that an advantage of 7-UP is that 
it could easily be adapted to work with segmentation-free im
ages. Second, since our data were processed in an internally con
sistent manner—i.e. the pipeline for acquiring test data and 
training data was identical—mIF data accuracy should not af
fect the 7-UP model’s ability to generalize. Furthermore, we 
demonstrate that the model is still able to learn biologically 
relevant information as reflected through cell type and patient 
phenotype predictions.

Materials and methods
CODEX data collection
All samples are prepared, stained, and acquired following CODEX 
User Manual Rev C (https://www.akoyabio.com).

Coverslip preparation
Coverslips are coated with 0.1% poly-L-lysine solution to enhance 
adherence of tissue sections prior to mounting. The prepared cov
erslips are washed and stored according to the guidelines in the 
CODEX User Manual.

Tissue sectioning
Formaldehyde-fixed paraffin-embedded (FFPE) samples are sec
tioned at a thickness of 3–5 µm on the poly-L-lysine-coated glass 
coverslips.

Antibody conjugation
Custom conjugated antibodies are prepared using the CODEX 
Conjugation Kit, which includes the following steps: (i) the antibody 
is partially reduced to expose thiol ends of the antibody heavy 
chains, (ii) the reduced antibody is conjugated with a CODEX bar
code, (iii) the conjugated antibody is purified, and (iv) antibody stor
age solution is added for antibody stabilization for long-term 
storage. Postconjugated antibodies are validated by SDS–polyacryl
amide gel electrophoresis (SDS–PAGE) and QC tissue testing, where 
IF images are stained and acquired following standard CODEX pro
tocols, and then evaluated by immunologists.

Staining
CODEX mIF imaging was performed on FFPE patient biopsies using 
the Akoya Biosciences PhenoCycler platform (also known as 
CODEX). Five-micrometer-thick sections were mounted onto 
poly-L-lysine-treated glass coverslips as tumor microarrays. 
Samples were pretreated by heating on a 55 °C hot plate for 
25 min and cooled for 5 min. Each coverslip was hydrated using 
an ethanol series: two washes in HistoChoice Clearing Agent; 
two in 100% ethanol; one wash each in 90%, 70%, 50%, and 30% 
ethanol solutions; and two washes in deionized water (ddH2O). 
Next, antigen retrieval was performed by immersing coverslips 
in Tris-EDTA pH 9.0 and incubating them in a pressure cooker 
for 20 min on the high setting, followed by 7 min to cool. 
Coverslips were washed twice for 2 min each in ddH2O and then 
washed in Hydration Buffer (Akoya Biosciences) twice for 2 min 
each. Next, coverslips were equilibrated in Staining Buffer 
(Akoya Biosciences) for 30 min. The conjugated antibody cocktail 
solution in Staining Buffer was added to coverslips in a humidity 
chamber and incubated for 3 h at room temperature or 16 h at 
4°C. After incubation, the sample coverslips are washed and fixed 
following the CODEX User Manual.

Data acquisition
Sample coverslips are mounted on a microscope stage. Images are 
acquired using a Keyence microscope that is configured to the 
PhenoCycler Instrument at a 20× objective. All of the sample col
lections were approved by institutional review boards.

To correct for possible autofluorescence, “blank” images were 
acquired in each microscope channel during the first cycle of 
CODEX and during the last. For these images, no fluorophores 
were added to the tissue. These images were used for background 
subtraction. Typically, autofluorescence will decrease over the 
course of a CODEX experiment (due to repeated exposures). 
Thus, to correct each cycle, our method determines the extent 
of subtraction needed by interpolating between the first and last 
“blank” images.

Quality control
For each study, biomarker staining quality was evaluated by an 
immunologist for specificity and signal-to-noise characteristics. 
In Fig. S4, we have included examples of core quality reviews 
from the UPMC-HNC data set. Each biomarker was scored for 
staining performance using the following criteria: 3, highest qual
ity with cell-type and subcellular specificity, low background sig
nal; 2, good quality with cell-type and subcellular specificity, 
possibly some background signal; 1, some cell-type and subcellu
lar specificity may be detected, background signal may be high; 0, 
no biomarker specificity observed, high background signal; ND, 
not determined, stain specificity could not be determined. For 
the UPMC-HNC study, for instance, 41 biomarkers in the panel 
were scored: 17 biomarkers had a score of 3, 9 biomarkers had a 
score of 2, 13 biomarkers had a score of 1, 1 biomarker had a score 
of 0, and 1 biomarker had a score of ND (not determined). Markers 
with poor quality were removed from the study prior to analysis. 
The vast majority of markers received a passing grade in the ana
lysis (for UPMC-HNC, 39/41 or 95.1%). Representative images for 
all markers have been added to the study as an interactive 
HTML report (report link; download the HTML file and open in a 
browser). Representative grades have been added to the manu
script as a figure as well (Fig. S5). The analyses and procedures 
performed in this report are repeated across the other studies 
used in this manuscript.
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Additionally, we have included a visualization of cell types with 
relevant biomarkers on three samples from the UPMC-HNC study 
(Fig. S6). Finally, we visualize the average biomarker expressions 
by cell type for each study that was evaluated (Fig. S7).

Data sets
The UPMC-HNC and Stanford-HNC data sets have one held-out 
coverslip for model validation and one held-out coverslip for mod
el evaluation. The Stanford-CRC data set has half of one coverslip 
randomly split and held out for model validation and one held out 
for model evaluation. The DFCI-HNC data set has one coverslip 
randomly split by patients for model evaluation.

Choice of input biomarkers
Our 7-UP framework can be applied to any set of input bio
markers, though the imputation performance improves if the in
put markers are particularly informative. Concrete autoencoder 
(21) is an unsupervised neural network that determines the subset 
of biomarkers that are most useful for reconstructing the entire 
CODEX panel (Fig. 1A). The concrete autoencoder takes a full set 
of input biomarker expressions and outputs a feature importance 
score for each biomarker. This approach achieves very similar re
sults when compared to a naïve greedy algorithm (iteratively in
cluding the most important biomarkers in the model) but is 
more computationally efficient.

Biomarker expression preprocessing
Single-cell expression was computed for each biomarker by (i) ap
plying a deep learning cell segmentation algorithm (DeepCell) (26) 
on the DAPI biomarker channel (nuclear stain) to obtain nuclear 
segmentation masks, (ii) successively dilating segmentation 
masks by flipping pixels each time with a probability equal to 
the fraction of positive neighboring pixels (repeated nine times), 
(iii) computing the mean expression value across pixels within 
the single cell, and (iv) normalizing the expression values across 
all cells in a sample using quantile normalization and arcsinh 
transformation followed by a z-score normalization:

zscore arcsinh
x

5q0.2(x)

􏼒 􏼓􏼒 􏼓

, 

where zscore is defined given μ and σ, the mean and standard 
deviation across all cell expression values in the sample:

zscore(x) =
x − μ

σ
, 

where x is the vector of a biomarker’s values in a sample, arcsinh 
is the inverse hyperbolic sine function; and q0.2(x) is the 20th 
percentile of x.

Image patch generation
After preprocessing (tile and cycle alignment, stitching, deconvo
lution, and background correction), CODEX data are available as 
multichannel OME-TIFF files, with each image channel corre
sponding to the fluorescence signal (expression) of a distinct bio
marker probe. To prepare the input image patches for the deep 
learning model, we perform the following: all pixel values for a 
biomarker in a sample are normalized using ImageJ’s 
AutoAdjust function. An image patch (224 px × 224 px) is then gen
erated for each cell, for each biomarker, in the region. Each patch 
consists of three channels. The first channel contains the seg
mented cell only, rescaled 3×, centered with zero padding around 
the cell; the second channel contains a crop of the neighborhood 

(∼20 cells) centered around the cell (∼84 µm) at 1× scaling, and the 
third channel contains a crop of the neighborhood (∼80 cells) at 
0.5× scaling also centered around the cell (∼42 µm). These chan
nels are visualized in Fig. 1B. As a reference, all coverslips are im
aged at a resolution of 0.3775 µm per pixel.

Deep learning model
We trained a ResNet-50 (23) deep learning model to learn cell 
shape features as well as spatial information of cell neighbor
hoods. We find that training the model on cell type classification 
enables it to learn an effective morphology featurizer. We start 
with a model with weights pretrained on the ImageNet data set 
(27). The model takes as input a 224 × 224 × 21 size tensor, where 
the 21 channels correspond to stacking 7 input biomarkers with 
3 feature channels each. The last layer is modified to classify 
over one-hot encoded cell types. The model is trained with cat
egorical cross-entropy loss, and a cell-wise F1 score is computed 
at each validation step. The learning rate is initialized at 1e−4, 
and decays by a factor of 0.2 if the validation F1 score does not im
prove over 5,000 steps. Training stops after 75,000 steps of no im
provement, and the model with the highest validation F1 score is 
chosen. To improve model robustness, we trained an ensemble of 
five identical models with different random weight initializations 
and computed the mean prediction across all models to obtain a 
final model score. While each individual model’s performance is 
comparable, we find that aggregating the predictions boosts over
all performance (Fig. S8). All models were implemented and 
trained using PyTorch (28), a Python deep learning framework. 
To gain insights into what is learned by the deep learning model, 
we extracted morphology features (using the HistomicsTK Python 
library) from the cell segmentation masks and correlated them 
with the top 10 principal components (PCs) of the deep learning 
model-extracted last layer embeddings (Fig. S9). Earlier PCs are 
more correlated with cell size features like area and axis length 
while later PCs (i.e. five) are more correlated with cell shape fea
tures like eccentricity and axis ratio. While the manual features 
correlate well with the deep learning embedding features, inter
pretation of our deep learning model is inherently limited given 
that the morphology features are extracted from the cell segmen
tation mask, while the input patch to the deep learning model in
cludes the cell’s context.

Biomarker imputation model
XGBoost (24), a gradient-boosting decision tree algorithm shown 
to achieve top performance in tabular data regression, is used 
for imputing single-cell biomarker expressions. The model takes 
as input the cell expression values of the seven input biomarkers, 
along with, in the case of adding morphology information, a prob
ability vector corresponding to cell type predictions from the deep 
learning model. It is then trained to jointly predict the expression 
values of the remaining biomarkers. We find that directly using 
the output probabilities improves model performance more 
than using the final featurization layer. We used squared error 
loss, a learning rate of 0.1, 500 estimators, a max depth of 3, a per- 
tree column sampling of 0.7, and GPU (Graphics Processing 
Unit)-accelerated training. All other hyperparameters are default 
settings in the XGBoost Python library.

Dimensionality reduction
To visualize the concordance of CODEX-measured and imputed 
biomarkers, we randomly sample 10,000 cells with 
CODEX-measured biomarker values and 10,000 cells with 
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imputed biomarker values and fit a UMAP (29) dimensionality re
duction model on the combined set. We then plot the projected 2D 
data points separately and color them by ground truth cell types, 
expression of CD45, and expression of CD20 (the latter two use the 
75th percentile expression value as a binary threshold). The UMAP 
model is trained using the RAPIDS.ai GPU-accelerated implemen
tation with default settings.

Patchwise metrics
Given the naturally high degree of intercellular expression vari
ation within local neighborhoods of cells, we report biomarker 
and cell type predictions aggregated within a local cell neighbor
hood. Figure S10 shows the relationship between the choice of 
cell neighborhood patch size (in pixels) and the average PCC and 
F1 score. The patchwise PCC of a biomarker is computed as the 
PCC between the CODEX-measured and imputed patchwise aver
age expressions. Patchwise F1 is computed by considering a patch 
as positive if at least one cell is assigned to that cell type and then 
calculating the F1 score across patches.

Cell type ground truth and predictions
To produce cell type labels, we first obtained a cells-by-features 
biomarker expression matrix—for each marker, we took the aver
age signal across all pixels in a segmented cell. This matrix was 
normalized and scaled as described above, and then PC analysis 
was performed. We constructed a nearest neighbor graph (k =  
30) of cell expression in PC space with the top 20 PCs and then per
formed self-supervised graph clustering (30) on the result. 
Clusters were manually annotated according to their cell bio
marker expression patterns. This procedure was performed on 
a subset of 10,000 cells and subsequently used to train a kNN 
algorithm. This algorithm was used to transfer labels to the 
entire data set.

In our experiments where we generate cell type predictions 
based on the imputed biomarkers, we use this trained kNN algo
rithm and substitute the subset of expressions for which we are 
imputing with the imputed values from the ML model. Thus, for 
the UPMC-HNC data set with 41 total biomarkers, 7 biomarkers 
will be the CODEX-measured values, and 33 biomarkers will be 
imputed.

Survival outcome prediction
Additionally, three phenotypic patient outcomes from the UPMC- 
HNC data set are evaluated: survival status [No Evidence of 
Disease (NED) versus Died of Disease (DOD)], HPV status (a signifi
cant indicator of cancer prognosis), and recurrence (if the cancer 
recurs within 5 years after diagnosis).

We used a GNN-based model (25) trained on using cell types to 
predict patient phenotypic outcomes. This model transforms the 
structure of each sample into a graph network, where cells are 
connected by edges to neighboring cells. It then pools information 
about the neighboring cells’ cell types to output an outcome prob
ability score for each cell. The sample predictions are generated 
by averaging the scores across all cells in that sample. We eval
uated models that have been trained on three patient phenotypic 
outcomes: survival status, HPV status, and recurrence. To valid
ate the utility of our imputed cell types, we replace the original an
notated cell type labels with the predicted cell types produced 
from the imputed biomarkers. The results are reported in Fig. 4, 
where we see that performance on these three tasks is compar
able between using the imputed biomarkers and the 
CODEX-generated biomarkers.

Supplementary material
Supplementary material is available at PNAS Nexus online.
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