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Subcellular protein localization is important for understanding functional states of cells, but
measuring and quantifying this information can be difficult and typically requires high-resolution
microscopy. In this work, we develop a metric to define surface protein polarity from
immunofluorescence (IF) imaging data and use it to identify distinct immune cell states within
tumor microenvironments. We apply this metric to characterize over two million cells across 600
patient samples and find that cells identified as having polar expression exhibit characteristics
relating to tumor-immune cell engagement. Additionally, we show that incorporating these
polarity-defined cell subtypes improves the performance of deep learning models trained to predict
patient survival outcomes. This method provides a first look at using subcellular protein expression
patterns to phenotype immune cell functional states with applications to precision medicine.
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1. Introduction

Spatial proteomics methods such as immunofluorescence (IF) and immunohistochemistry (IHC)
enable an unprecedented view of tumor microenvironments by preserving the spatial structure of
tissues at subcellular resolution1. However, standard analyses aggregate and average protein
expression within segmented single cells, discarding sub-cellular and morphological signals2. This
approach introduces a number of analytical limitations. First, segmentation can be imprecise.
Second, subcellular protein expression patterns could allow the inference of cellular functional
states (i.e. polarized vs. uniform). Thus, while cells can be phenotyped in the context of their
spatial neighbors, cells that exhibit differential protein localization are not differentiated.

The relationship between protein localization and function is well-established in many
contexts. For instance, during T cell engagement with presented antigens (e.g., on tumor cells),
the CD4 and CD8 coreceptors are recruited to the immune synapse, while they present uniformly
on the surface of a cell in a naive or exhausted state 3–5. The immune synapse, also known as the
supramolecular activation cluster, is a specialized junction formed by many proteins during an
immune response. In the context of a tumor immune response, active and engaged T cells could
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correlate with better patient survival, whereas the presence of exhausted or inactive T cells may be
indicative of worse outcomes 6–8. However, it is unknown to what extent this or other such
dynamic subcellular localization events are discernable from whole slide scale histology images.

Common analyses of cell morphology 9–13 utilize computer vision models for the automatic
extraction of image features from tissue patches. However, interrogating such models for specific
cell-cell interactions is difficult. Previous work toward characterizing surface protein localization
includes statistical methods for identifying ligand-receptor pairs in transcriptomics 14,15, polarity
localization measurements in mRNA 16,17, and co-localization with protein expression 18.

In this paper, we present a novel approach, PEPSI (Protein Expression Polarity Subtyping
in Immunostains), for measuring subcellular protein localization toward characterizing the tumor
microenvironment. We describe a simple, explainable method for computing the polarity of cell
surface biomarkers. We apply this metric on multiple large-scale CODEX (co-detection by
indexing) datasets spanning over two million cells, three clinical sites, and 600 patient samples.
We focus on several key immune cells that are well-characterized and known to express polarized
surface protein markers during activation/engagement. We define additional cell subtypes relating
to morphology (polarized, uniform) for representative biomarkers (CD8, CD4, CD20) of immune
cells (T cells and B cells). We find that surface protein marker polarity is significantly correlated
with positive patient outcomes, even after controlling for various technical artifacts, suggesting
that this may be important for characterizing the functional state of immune cells. We believe that
inferring functional subtypes of cells can offer a better understanding of patient response to drug
treatments and disease prognostic indicators.

2.   Results

2.1.   Polarity measurement

We describe a straightforward method for extracting polarity measurements for a given cell based
on a polar transformation of the IF signal with respect to the cell centroid (Figure 1A, Methods).
Plotting the distribution of scores for four markers in their cognate expression cell types - CD8 in
CD8 T cells, CD4 in CD4 T cells, CD20 in B cells, and PanCK in tumor cells - shows that the
scores exhibit continuous distributions (Figure 1B). The first three biomarkers, which are known
to polarize in cells undergoing immune activation, show significantly higher average polarity
scores versus PanCK, which is not known to polarize as such. To obtain a discrete polarity
classification, we threshold the raw scores based on an empirical heuristic (Methods), obtaining
proportions for polar, uniform, and ‘other’ cells for each of the three immune cell types (Figure
1C). For instance, polar cells account for 3.7%, 3.0%, and 2.6% of CD8 T cells, CD4 T cells, and
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B cells, respectively. Example cells were randomly inspected in their cell contexts to visually
validate the classifications (Figure 1D).

Fig. 1: Overview of the PEPSI polarity measurement framework. Panel A: Schematic of polarity
measurement algorithm. For a given mIF sample, patches (40px by 40px) are extracted around each cell. For
each cell, a polar transform is computed on the patch, followed by summing along the y-axis and then
computing the area under the CDF curve, yielding a polarity score (from 0 to 1). Panel B: The polarity score
histograms are shown for CD8, CD4, CD20, and PanCK biomarkers in CD8 T cells, CD4 T cells, B cells,
and tumors, respectively. The orange (left) line indicates the upper threshold chosen for identifying uniform
cells, whereas the green (right) line indicates the lower threshold chosen for identifying polar cells. Cells in
between two thresholds are indicated as ‘Other’. Panel C: The percent proportions of polar, uniform, and
other cells across the three cell types and their key biomarkers. Panel D: For CD8 T cells, representative
examples of polar and uniform CD8 T cells are shown, and color-coded by relevant biomarkers.

2.2.   Polarized cell neighborhoods are more enriched with tumors

Next, we explore whether polar immune cells might exhibit differences in their cellular
neighborhoods with respect to uniform cells of the same type. Examples of a polarized CD8 T cell
adjacent to a tumor cell (left) or not (right) are shown in Figure 2A. We found that, for CD8 T
cells, CD4 T cells, and B cells, tumor cells were consistently enriched in the immediate cell
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neighborhoods of polar cells versus uniform cells (Figure 2B). Conversely, we also find that cells
with tumor cell neighbors are more likely to be polar (Supp. Table 1). Given that polar expression
can indicate antigen engagement during contact with tumor cells 19, this provides evidence that
polarity is a biologically significant biomarker.

Fig 2: Tumor cells are more present next to polar cells versus uniform cells. Panel A: Diagrams and mIF
images illustrating two possible states of CD8 T cells. Left: A CD8 T cell engaged with a tumor cell, with
polar expression of CD8 at the immunological synapse. Right: A uniformly expressed CD8 T cell, with no
tumor engagement. Panel B: Since polarity may be indicative of tumor engagement, we measure the cell
type composition of neighborhoods around polar versus uniform cell types. We find that tumor cells are
consistently and significantly more enriched in polar cell neighborhoods versus uniform cell neighborhoods
for all three immune cell types. We compute bootstrapped 95% confidence intervals for each neighboring
cell type and only show cell types with significant log fold changes.
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2.3.   Metric control experiments

In addition to visual validation, we perform tests to validate that the metric distribution is not
explained by simple technical covariates or noise. We find that polarity cannot be simply explained
by significantly more crowded cell neighborhoods (Supp Figure 1A) or differences in cell size (R2
of 0.08, Supp Figure 1B). During antigen engagement, multiple biomarkers are known to jointly
express at the site of the immunological synapse 20. Supp. Figure 1C measures the correlation of
polarity scores between all pairs of biomarkers as expressed in all T cells, B cells, and tumor cells.
CD3e, a biomarker known to express during engagement, is jointly polarized with CD4 and CD8,
while, PanCK, a biomarker not known to be active during antigen engagement, does not correlate
with CD20, CD3e, CD4, or CD8. We note that the observed co-polarity between CD4 and CD8 is
likely due to expression from neighboring cells that are being captured by our algorithm as
originating from the same cell, an artifact that occurs in a small fraction of T cells (Supp. Figure
1D).

2.4.   Polarity-defined cell types improve model prediction of survival outcomes

To demonstrate that the newly classified polar or uniform cell subtypes have biological or clinical
relevance, we utilize deep learning models to predict patient survival from cell phenotypes. We
train two models: a 3-layer multi-layer perceptron (MLP) neural network, which takes as input the
percent composition of cell types per sample and predicts a binary outcome (five-year survival);
and a graph-based neural network (GNN) that takes as input a 3-hop neighborhood of cells centered
around a single cell, and predicts the survival status of the sample from which the neighborhood of
cells originated. Both models show modest but consistent improvement in performance across three
distinct studies and two disease types after including the 6 new cell types (Table 1). Supp. Table 2
shows ablations where the MLP model is trained on each polar/uniform cell type individually. Of
note, a model is trained with Ki67 polarity in tumor cells as a negative control (since Ki67 is not
known to express polarly) and demonstrates no improvement over the baseline. Finally, we use the
percent of polar cells per sample and compute the AUROC in its usefulness in predicting survival
outcomes in Supp. Table 3 and find that even this simple metric alone has predictive accuracy
above chance.
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Survival status UPMC-HNC Stanford-CRC DFCI-HNC (using UPMC-HNC
model) generalization

MLP

- Baseline 0.759 (0.053) 0.538 (0.132) 0.655 (0.074)

- Adding
polarity-defined cell
subtypes 0.803 (0.049) 0.559 (0.135) 0.672 (0.072)

GNN

- Baseline 0.839 (0.048) 0.684 (0.092) 0.853 (0.046)

- Adding
polarity-defined cell
subtypes

0.856 (0.045) 0.743 (0.090) 0.880 (0.051)

Table 1: Adding polarity-specific cell types improves patient survival prediction in machine learning
models. To validate the usefulness of the polarity-specific cell types derived from our polarity measurement
method, we train two models to predict patient survival status, with and without the additional cell types
(polar and uniform CD8 T cells, CD4 T cells, B cells). Each cell represents the AUC of the model’s
prediction of patient survival. We observe that adding the additional cell types improves model performance
across three datasets, three clinical sites, and two disease types. Standard deviations of bootstrapped samples
are reported in parentheses. Predictions are generated at the sample level.

2.5.   Presence of polar cells improves patient survival with in silico models under label and
spatial permutations

In the permutation experiments shown in Figure 3 and Supp. Table 4, the GNN model predicts
significantly worse survival in tumor microenvironments where the subtype of the immune cells
are flipped from polar to uniform (Figure 3B). The inverse is also true; the predicted survival
improves when cells are flipped from uniform to polar. Even when fixing the cell type composition,
dispersing the location of the immune cells away from the tumor cells results in a decrease in
predicted survival (and vice versa) (Figure 3C). These results suggest that polar immune cells are
important not simply for their presence in a sample, but for their proximity to tumor cells.
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Fig 3: In silico experimentation reveals that polar cells are correlated with positive patient outcomes. Panel
A: A schematic of a graph neural network described inWu et al. 2022. A mIF sample is represented by a
Voronoi diagram, which is projected into a spatial graph. A graph neural network is trained to predict
survival outcomes based on 3-hop cellular neighborhoods. Panel B: Using a trained GNN, we perform label
permutation on each sample graph, where the subtype of each immune cell is flipped to either polar or
uniform, and the averaged model prediction is measured. Even when fixing spatial neighborhoods, we
observe an increased predicted survival probability when cells are polarized, and a slight decrease when
cells are turned into uniform states. Panel C: Now, fixing the cell types, polar and uniform cell
neighborhoods are sampled and spatially permuted. We observe, on average, a larger increase in predicted
survival when polar cells are dispersed from the clustered state than with uniform cells.

3.   Methods

3.1.   Datasets

Our primary dataset consists of 308 samples from 81 patients with head and neck squamous cell
carcinomas at the University of Pittsburgh Medical Center (UPMC-HNC). Two external validation
datasets are used: a colorectal cancer dataset with 292 samples from 161 patients from Stanford
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University (Stanford-CRC) to demonstrate generalization to another disease; and a head and neck
squamous cell carcinomas dataset with 112 samples from 29 patients from Dana Farber Cancer
Institute (DFCI-HNC) to demonstrate generalization to an additional clinical site. The number of
samples, patients, coverslips, and total cells in each dataset is described in Supp. Table 5A.
Phenotype annotations for UPMC-HNC are described in Supp. Table 5B. Full CODEX data
acquisition and preparation details are described in Supp. Methods. UPMC-HNC is chosen as the
primary training and evaluation dataset as it contains the largest number of samples, coverslips, and
total cells. We evaluate our models on held-out coverslips not seen during training to assess model
robustness to technical artifacts across coverslips.

The UPMC-HNC and Stanford-CRC datasets have one held-out coverslip for model
validation and one held-out coverslip for model evaluation. The Stanford-CRC dataset has half of
one coverslip randomly split and held out for model validation and one held out for model
evaluation. The DFCI-HNC dataset has one coverslip randomly split by patients for model
evaluation.

3.2.   Biomarker expression preprocessing

Single-cell expression was computed for each biomarker by 1. applying a deep learning cell
segmentation algorithm (DeepCell) 21 on the DAPI biomarker channel (nuclear stain) to obtain
nuclear segmentation masks; 2. successively dilating segmentation masks by flipping pixels each
time with a probability equal to the fraction of positive neighboring pixels (repeated 9 times); 3.
computing the mean expression value across pixels within the single cell; and 4. normalizing the
expression values across all cells in a sample using quantile normalization and arcsinh
transformation followed by a z-score normalization:

𝑧𝑠𝑐𝑜𝑟𝑒(𝑎𝑟𝑐𝑠𝑖𝑛ℎ( 𝑥
5𝑞

0.2
(𝑥) ))

Where is defined given μ and σ, the mean and standard deviation across all cell𝑧𝑠𝑐𝑜𝑟𝑒
expression values in the sample:

𝑧𝑠𝑐𝑜𝑟𝑒(𝑥) =  𝑥−µ
σ

is the vector of a biomarker's values in a sample, is the inverse hyperbolic sine𝑥 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 
function; and is the 20th percentile of .𝑞

0.2
(𝑥) 𝑥
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3.3.   Image patch generation

After preprocessing (tile & cycle alignment, stitching, deconvolution, and background correction)
CODEX data is available as multichannel OME-TIFF files, with each image channel corresponding
to the fluorescence signal (expression) of a distinct biomarker probe. To prepare the input image
patches for the deep learning model, we perform the following: All pixel values for a biomarker in
a sample are normalized using ImageJ’s AutoAdjust function.

3.4.   Cell type ground truth and predictions

To produce cell type labels, we first obtained a cells-by-features biomarker expression matrix - for
each marker, we took the average signal across all pixels in a segmented cell. This matrix was
normalized and scaled as described above, and then principal component (PC) analysis was
performed. We constructed a nearest-neighbor graph (k = 30) of cell expression in PC space with
the top 20 PCs, then performed self-supervised graph clustering 22 on the result. Clusters were
manually annotated according to their cell biomarker expression patterns. This procedure was
performed on a subset of 10,000 cells and subsequently used to train a kNN algorithm. This
algorithm was used to transfer labels to the entire dataset. The cell type labels that were used are:
Tumor (CD15+, CD20+, CD21+, Ki67+, Podo+, Other), Naive immune cell, Granulocyte, Vessel,
CD4 T cell, Macrophage, CD8 T cell, Stromal / Fibroblast, APC, Lymph vessel, and B cell.

3.5.   Calculating polarity score

Our polarity measurement methodology is described in Figure 1. The segmentations are used to
calculate cell center coordinates. For each cell, a 40px square patch is extracted around the center
pixel. Several de-noising steps are first taken: 1. low/background values are zeroed out (values <
0.1), 2. biomarker expressions that spatially overlap with the DAPI channel are subtracted out in
both the center and neighborhood cells.

We then transform the patch from cartesian coordinates to polar coordinates using the scikit
package (skimage.transform.warp_polar). The polar image is then summed along the y-axis,
producing a 1-dimensional vector. An additional refining step is taken where cells are assigned
‘other’ if the vector 1. sums to 0 either along the x- or y-axis, 2. does not contain multiple unique
values, or 3. has a mean less than 0.02. Finally, the vector is normalized within a [0,1] range and
sorted in ascending order, and a score is computed by subtracting the AUC of the sorted vector
from 1.

On its own, the polarity score is difficult to interpret and incorporate into existing analysis
pipelines that rely on discrete cell phenotypes. Thus, we define three cell subtypes based on the
polarity score value: uniform (cells with a polarity score below a threshold), polar (cells with a
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polarity score above a threshold), and other (cells that fall in between both thresholds). To obtain
optimal thresholds for defining polar and uniform cell types from the polarity scores, we perform a
two-dimensional grid search on the MLP model and select the pair of values that yielded the
highest validation AUC score in the survival prediction task. From this process, we obtain 0.94 and
0.8 as the polar and uniform threshold cutoffs, respectively (Figure 1B). Figure 1C shows the
polarity distributions after thresholding.

These thresholds are used to define six new cell subtypes for polar and uniform CD8 T
cells, CD4 T cells, and B cells. CD8, CD4, and CD20 were used as the representative surface
biomarkers for each of the three cell types, respectively. These three cells and biomarkers were
chosen as they are known in the literature to exhibit polar expression during engagement 19.

3.6.   Machine learning models

We train two machine learning models to evaluate the benefit of including the six newly defined
cell subtypes. First, we use a 3-layer multilayer perceptron (MLP) neural network that accepts the
percent composition of cell types per sample and predicts binary 60-month survival. Each layer
contains 256 nodes followed by a LeakyReLU 23 activation function. Each model is trained with
binary cross-entropy loss across 200 epochs and a learning rate of 0.001.

Second, we train a graph-based neural network (GNN) 24 that takes as input 3-hop cell
neighborhoods and predicts neighborhood-level survival status (Figure 2A). This model transforms
the structure of each sample into a graph network, where cells are connected by edges to
neighboring cells. It then pools information about the neighboring cells’ cell types to output an
outcome probability score for each cell. The sample predictions are generated by averaging the
scores across all cells in that sample. Model training details follow the procedures described in Wu
et al. 24.

Each of the models is trained first on the original 16 cell types (baseline) and then trained
using the 6 additional cell types. In both of these settings, each model is trained and evaluated on
the UPMC-HNC and Stanford-CRC datasets. An additional evaluation is performed on the
DFCI-HNC dataset using the UPMC-HNC trained model.

3.7.   Permutation experiments

To assess the effect of polar/uniform cell types on the GNN model’s survival predictions, we
perform several permutation experiments. In the first experiment (Figure 3A), we flip the cell type
label of all immune cells to either polar or uniform and evaluate the predicted survival probability
in each scenario. In the second experiment, we sample random subgraphs containing immune cells
and tumor cells for CD4 T cells, CD8 T cells, and B cells. Then, we flip all immune cells to either
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polar or uniform and perform a spatial permutation, where we shuffle the immune cells into either
clustered (where all immune cells are neighbors) or dispersed (where immune cells are randomly
located in the subgraph) orientations and evaluate the predicted probabilities for each orientation.

4.   Discussion

We describe a robust, interpretable subcellular morphology metric that reflects macro-biological
states. Although our results do not conclude that these polarity events definitively quantify immune
synapses, they do suggest that such measurements represent biologically relevant signals in tumor
microenvironments. Though our described method is performed on CODEX data, it can similarly
be applied to other lower-plexed imaging techniques like IHC that include a nuclear marker (i.e.
DAPI) and one or more surface biomarkers.

To date, there has not been prior consensus demonstrating that biological events like
engagement and activation or exhaustion can be reliably observed at the standard resolution of mIF
imaging. Potential confounders include bleedover, sample slicing artifacts, measurement noise, cell
size, and density of neighboring cells. We address this by conducting several negative control
experiments and find that these factors alone do not adequately explain the signal present in our
polarity measurements.

One counter-hypothesis is that polarity measurements serve as a proxy for neighborhood
information -- i.e. the presence of certain cell types or spatial arrangements. Another possibility is
that they are primarily an imaging artifact (for instance, irregular borders due to slicing). To test
these, we trained a GNN that incorporates local neighborhood information into its predictions and
then introduced the polar and uniform cell types. The results show that the new cell types improve
performance even in models that have access to cell neighborhood information, suggesting that it
introduces information beyond the neighborhood cell type composition or spatial arrangement of
cells.

Further experimental evidence is required to define these observations as a specific
biological phenomenon, i.e. T cell engagement. However, we believe that this work provides
evidence of the importance of measuring and incorporating subcellular polarity information into
tissue microenvironment analyses, and represents an important step toward a personalized
understanding of disease states, drug response, and patient prognosis.

Supplementary Materials: All supplementary tables, figures, and data are available at:
https://docs.google.com/document/d/1n97PEC2kq41fNOWMXrOASyd42DZ0_nUapnEs6HoeJ8c
Code Availability: Code for replicating the experiments in this paper is present in this code
repository: https://gitlab.com/enable-medicine-public/polarity
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