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Hematoxylin and eosin (H&E) is a common and inexpensive histopathology
assay. Though widely used and information-rich, it cannot directly inform
about specific molecular markers, which require additional experiments to
assess. To address this gap, we present ROSIE, a deep-learning framework that
computationally imputes the expression and localization of dozens of proteins
from H&E images. Our model is trained on a dataset of over 1300 paired and
aligned H&E and multiplex immunofluorescence (mlIF) samples from over a
dozen tissues and disease conditions, spanning over 16 million cells. Validation
of our in silico m/F staining method on held-out H&E samples demonstrates
that the predicted biomarkers are effective in identifying cell phenotypes,
particularly distinguishing lymphocytes such as B cells and T cells, which are
not readily discernible with H&E staining alone. Additionally, ROSIE facilitates
the robust identification of stromal and epithelial microenvironments and
immune cell subtypes like tumor-infiltrating lymphocytes (TILs), which are
important for understanding tumor-immune interactions and can help inform
treatment strategies in cancer research.

H&E staining is ubiquitously used in clinical histopathology due to its
affordability, accessibility, and effectiveness for discerning clini-
cally relevant features. While H&E readily identifies nuclear and
cytoplasmic morphology, its utility is limited in revealing more
complex molecular information associated with modern precision
medicine'. Pathologists can identify diverse cell types from H&E

staining alone; however, computational approaches to annotating
H&E images only distinguish a few broad cell categories, such as
endothelial, epithelial, stromal, and immune cells**. These
methods are valuable for detecting tumors and identifying basic
structural features but are limited in revealing detailed aspects of
the cellular microenvironment, such as protein expression profiles,
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disease signatures, or the specific identity of immune cells like
lymphocytes.

In contrast, multi-plex immunofluorescence (mlIF) imaging tech-
niques such as Co-Detection by Indexing (CODEX) and immunohis-
tochemistry (IHC) enable in situ detection of dozens of proteins
simultaneously. This capability allows for the exploration of richer
tissue microenvironments, offering insights that are unattainable
through H&E staining alone’®, However, the application of CODEX and
similar mIF techniques is limited by high costs, time-intensive

A: Data Description

Co-stained tissue sample Training data

protocols, and lack of adoption in clinical labs, making them less fea-
sible for routine use’.

In this work, we present ROSIE (RObust in Silico Immuno-
fluorescence from H&E images), a framework for in silico mIF staining
based on an H&E-stained input image. We train a deep learning model
on a dataset of over 1,000 tissue samples co-stained with H&E and
CODEX. This dataset, comprising nearly 30 million cells, is the largest
of its kind to date and significantly surpasses the scale of previous
studies, which typically focus on data from a single clinical site or a
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Fig. 1| Overview of ROSIE. A Our training dataset consists of 18 studies and over
16 M cells. Each tissue sample is co-stained with H&E and CODEX. 16 disease types
and 10 body areas are represented in this dataset. The overall distribution of
represented tissue types across training and evaluation datasets is shown on the
right. B A schematic of model training and inference is shown. Given an H&E
sample, the image is split into patches of size 128px by 128px. The model is trained
to predict the average expressions of the center 8px by 8px patch in the
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corresponding CODEX image. After the model is trained, a predicted CODEX image
is generated by aggregating all of the generated patches into a single image.

C Given an H&E-stained image, ROSIE predicts the pixel-level expression of 50
biomarkers. An exemplary image (with the highest Pearson R score) is visualized,
where seven representative biomarkers are colored and shown alongside the true
CODEX image. While the generated images used in our analyses are produced with
8px striding, this image is produced using 1px striding for greater visual clarity.
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Table 1| Description of evaluation datasets

Table 2 | Main evaluation results

Evaluation In training data? #Samples #Slides # Cells
Datasets "

Study Disease
Stanford-PGC  Yes Yes 149 1 817,765
Ochsner-CRC  No No 94 1 635,649
Tuebingen- No No 240 1 365,734
GEJ
UChicago- Yes Yes 2 1 3,099,419
DLBCL
Total - 485 8 4,918,567

We describe the four evaluation datasets used in this study. Samples from Stanford-PGC and
UChicago-DLBCL are divided into training and test splits; on the other hand, no samples and
disease types from Ochsner-CRC and Tuebingen-GEJ are used in the model’s training data.
UChicago-DLBCL contains two full tissue samples, whereas the rest of the datasets consist of
TMA core samples.

limited number of stains. Our findings demonstrate that the proposed
method can robustly predict and spatially resolve dozens of proteins
from H&E stains alone.

We validate the biological accuracy of these in silico-generated
protein expressions by employing them in detailed cell phenotyping and
the discovery of tissue structures such as stromal and epithelial tissues.
Our approach enables the identification of immune cell subtypes,
including B cells and T cell subtypes that are not discernible by H&E
staining alone, thus offering a powerful tool for enhancing the diag-
nostic and research potential of standard histopathological practices.

Recent advancements in training histopathology foundation
models'®'? have demonstrated that models trained on large, diverse
sets of histology images in an unsupervised manner can yield strong
performance when adapted to downstream tasks like predicting tissue
types and disease diagnosis and prognosis. While foundation models
can learn intricate biological features within the distribution of H&E
images, they still need to be explicitly trained on other imaging mod-
alities and molecular information to be adapted for generative meth-
ods like in silico staining.

Previous works in predicting immunostains from H&E have
typically focused on small paired or unpaired datasets and imputing
up to several biomarkers at once. To start, VirtualMultiplexer
is a GAN-based method for predicting 6-plex IHC stains®
using unpaired H&E and IHC samples. The limitation of using
unpaired samples is that validation of predictions is limited to
qualitative or visual assessments. Several methods have been
trained on paired (adjacent slice) datasets, such as: Multi-V-Stain™,
which predicts a 10-plex mIMC panel on 336 melanoma samples;
DeepLIIF® which predicts 3-plex mIHC on one sample; and other
GAN-based methods for predicting single or several biomarkers'**
predict two IHC biomarkers on brain tissue. Compared with paired
samples, co-stained (or same slice) samples allow for direct pixel-
level alignment and prediction from H&E to immunostain; to this
end, HEMIT (3-plex mIHC)* and vIHC (1-plex mIHC) both are trained
on co-stained samples but are also limited to evaluation on a single
sample?. focus on predicting a transcriptomics panel (1000 genes)
using 4 co-stained samples. Specific to multiplexed immuno-
fluorescence, 7-UP* used a small 7-plex panel to predict over 30
biomarkers®. use autofluorescence and DAPI channels to infer
seven biomarkers.

Our method improves upon this previous body of work in sev-
eral ways. First, we train and evaluate the largest co-stained H&E and
immunostaining dataset with over 1300 samples. Second, whereas
previous datasets were limited to one or several tissue types,
our dataset spans ten body areas and disease types. Third,
whereas previous works focus on visual or quantitative metrics of
expression prediction only, ours demonstrates the usefulness of the
predicted expressions for cell phenotyping and tissue structure

Evaluation Datasets Pearson R Spearman R C-index
(50 biomarkers) (sample)
Stanford-PGC

H&E expression 0.007 0.013 0.504
Cell morphology 0.072 0.081 0.574
ROSIE (our method) 0.319 0.386 0.694
ROSIE evaluated on:

Ochsner-CRC 0.218 0.276 0.597
Tuebingen-GEJ 0.265 0.289 0.668
UChicago-DLBCL 0.254 0.327 0.820
Average (ROSIE) 0.246 0.297 0.695

Our method is evaluated using three metrics: Pearson R, Spearman R, and C-index (sample),
which refers to the concordance index computed on the sample level using the 75th percentile
of expression values in a sample as a threshold. The performance of our method on the primary
dataset (Stanford-PGC) is reported along with two baseline methods (shown in italics): H&E
expression, which uses the mean cell-wise H&E pixel value as a proxy for protein expression, and
cell morphology, which uses features derived from the cell outlines based on DAPI expression as
well as the RGB pixel values as input to a neural network to predict protein expression. We also
report the performance of our method on the other three evaluation datasets.

discovery. Finally, instead of using difficult-to-train adversarial
methods, we use a straightforward single MSE objective for training
our model.

Results

A comprehensive, diverse dataset of co-stained tissue samples

We introduce a training and evaluation dataset across 20 studies
(Fig. 1A, Table 1; see Supplementary Materials for dataset details).
The training dataset consists of over 16 M cells from 18 studies,
1342 samples, and 13 disease types. The evaluation dataset consists
of 5M cells from 4 studies, 485 samples, and 4 disease types. Two
studies (Stanford-PGC and UChicago-DLBCL) are split between both
training and evaluation datasets. All studies are on tissue samples
with H&E and CODEX co-staining on the exact same samples.
All datasets consist of tissue microarray (TMA) cores (average 10 K
cells per core) except UChicago-DLBCL, which contains full slide
samples (average 1.5M cells per slide). Stanford-PGC is a study of
patients with pancreatic and gastrointestinal cancer from Stanford
Healthcare. Ochsner-CRC is a study of patients with colorectal
cancer from Ochsner Medical Center. Tuebingen-GEJ is a study of
patients with cancer in the gastroesophageal junction from Tiibin-
gen University Hospital. UChicago-DLBCL is a study of patients with
diffuse large B-cell lymphoma from the University of Chicago
Medical Center.

Generative deep learning model for inferring protein expression
from H&E stains

ROSIE is a framework for in silico staining on a sample based on an
H&E image. Using a ConvNext” convolutional neural network (CNN)
architecture, ROSIE operates on the patch level: given an input
128 x 128 pixel patch, it produces a prediction for the average
expressions of the biomarker panel across the center 8 x 8 pixels
(Fig. 1B). Using a sliding window with an 8px step size, we iteratively
generate predictions on all 8 x 8 pixel patches within a sample, then
stitch together predictions to produce a whole, contiguous image.
ROSIE can be run with smaller sliding window sizes, down to 1px for
native resolution outputs (see Supplementary Fig. 5 for examples).
Due to computational tradeoffs, analyses performed in this
paper are on the standard 8px sliding window setting. Although
Vision Transformer (ViT) models® have recently gained traction as
top-performing histopathology foundation models, we find that
ConvNext outperforms several ViT models despite its smaller size
(Supplementary Table 1).

Nature Communications | (2025)16:7633


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62346-0

A: Examples of predictions from ROSIE, Stanford-PGC
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C: Examples of predictions from ROSIE, additional datasets
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Fig. 2| Visualization of predictions from ROSIE. A Predicted and measured CODEX
samples along with the co-stained H&E images. The 99th, 75th, 50th, and 25th per-

centile (by Pearson R) samples are shown, colored with seven structural (Keratin8/18,
EpCAM, Vimentin, ECad, aSMA, CD31, PanCK) and immune (HLA-E, Gal3, CD45, CD21,
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LAG3, CD66, CD68) markers. B Pearson R correlation on all evaluation datasets for 50
biomarkers (visualized biomarkers are colored). Supplementary Fig. 5 visualizes

zoomed-in patches of predictions. C Visualizations of median samples (by Pearson R)
from three additional datasets: Ochsner-CRC, Tuebingen-GEJ, and UChicago-DLBCL.

A total of 148 unique biomarkers are represented across all studies.
We constrain our method to predict the top 50 biomarkers by pre-
valence. While all evaluation studies are stained with these 50 bio-
markers, some studies used in training are not; in these cases, only the
subset of biomarkers present in this set are used. The full biomarker set
that the model is trained to predict includes (in order of prevalence):

DAPI, CD4S, CD68, CDI14, PD1, FoxP3, CDS, HLA-DR, PanCK, CD3e,
CD4, aSMA, CD31, Vimentin, CD45R0, Ki67, CD20, CDIIc, Podoplanin,
PDLI1, GranzymeB, CD38, CD141, CD21, CD163, BCL2, LAG3, EpCAM,
CD44, ICOS, GATA3, Gal3, CD39, CD34, TIGIT, ECad, CD40, VISTA, HLA-A,
MPO, PCNA, ATM, TP63, IFNg, Keratin&/18, IDO1, CD79a, HLA-E, Col-
lagenlV, CDé6.
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A: Cell phenotype predictions from ROSIE, F1 score
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Fig. 3 | Cell type predictions using ROSIE. A F1 scores (N = 817,765 cells) on the
primary Stanford-PGC dataset, comparing the performance of ROSIE to two base-
lines: bulk phenotyping, which randomly assigns cell types based on sample-level
cell type proportions, and morphology features, which uses a three-layer neural
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23

Cell Types

B cells
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network to classify cells based on morphology features and the H&E RGB channels.
Data are presented as mean values with error bars as the 95% bootstrapped con-
fidence intervals. B Visualization of cell phenotype predictions from twelve median
samples by Pearson R.

ROSIE accurately predicts protein biomarker expressions

When applying ROSIE to the four evaluation datasets, we report a
Pearson R correlation of 0.285, a Spearman R correlation of 0.352,
and a sample-level C-index of 0.706 when comparing the ground

truth and computationally generated expressions across all 50 bio-
markers in all four datasets (Table 2). Whereas the Pearson correla-
tion indicates a linear predictive relationship, the Spearman R and
C-index indicate the usefulness of the predicted expressions in
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clinical tasks that involve ordering cells or samples by expressing a
certain biomarker (e.g., identifying immune markers in a cancer
patient cohort). C-index refers to the concordance index computed
on the sample level using the 75th percentile expression value as a
threshold. A C-index of 0.5, for instance, indicates random chance.
We show that our method significantly outperforms two baseline
methods: H&E expression, which uses the average intensity across
RGB channels as a direct proxy for protein expression for every
biomarker, is intended to test whether our predictive accuracy is
simply due to recapitulating the staining signal; and cell morphology,
which uses morphology features derived from the cell segmentations
in addition to the three RGB channels as inputs to a multi-layer
perceptron (MLP) neural network trained to predict protein
expression, is intended as a representative machine learning model
that uses common H&E-derived features as input. Both baseline
methods reported near-at-random performance based on the three
evaluation metrics. Figure 1C visualizes an exemplar predicted sam-
ple with a representative seven biomarker panel. Finally, we train and
evaluate a generative adversarial network (GAN) using the pix2pix*
model architecture to predict CODEX expression and show that such
an approach significantly underperforms ROSIE (Supplementary
Table 1, Supplementary Fig. 11).

ROSIE generates highly accurate full-sample CODEX images and
recapitulates salient visual features across representative immune and
structural biomarker panels (Fig. 2A). To illustrate the robustness of
ROSIE across a range of predictions, including relatively low-
performing ones, we display side-by-side predicted and ground truth
samples drawn from the 99th, 75th, 50th, and 25th percentiles of
performance (by Pearson R) in the Stanford-PGC dataset. Figure 2B
shows the Pearson R score for each of the 50 predicted biomarkers
averaged across all evaluation datasets. We also visualize every single
biomarker individually (Supplementary Fig. 1) from Stanford-PGC
(median samples by Pearson R), along with their distributions by
Pearson R (Supplementary Fig. 2) and scores on rank tests (Spearman R
and C-index, Supplementary Fig. 3).

To explain the predictions generated by ROSIE, we apply Grad-
CAM®, a visual interpretability technique for CNNs, on randomly
sampled input H&E image patches from the Stanford-PGC dataset to
see where in the image the model pays attention when making pre-
dictions. Supplementary Fig. 10 visualizes the gradient heatmaps
generated for 10 biomarkers from the randomly sampled image pat-
ches. We observe that for biomarkers that are primarily determined by
the nuclear protein expression (e.g. DAPI, Ki67, PCNA), the heatmap
values are located around the center of the patch; conversely, for
biomarkers that may be more context-dependent (e.g. CD68, PanCK,
ECad), the heatmap values are more diffuse and located around the
cellular neighborhood.

Generalization to unseen studies and disease types

ROSIE performs robustly even when evaluated on samples from clin-
ical sites and disease types never seen during training. When evaluated
on Ochsner-CRC and Tubingen-GEJ, two studies whose samples and
disease types do not appear in the training dataset, ROSIE reports
comparable average performance to Stanford-PGC: a Pearson R of
0.241 (vs. 0.319 on Stanford-PGC), Spearman R of 0.283 (vs. 0.386 on
Stanford-PGC), and a sample-level C-index of 0.633 (vs. 0.694 on
Stanford-PGC) across all 50 biomarkers (see Table 2). We confirm these
results visually in Fig. 2C, which contains median samples (by Pearson
R) from three other evaluation datasets (Ochsner-CRC, Tuebingen-GEJ,
and UChicago-DLBCL) with the same representative immune and
structural biomarker panels.

We additionally validate ROSIE’'s performance on a colorectal
cancer dataset imaged using Orion, a multiplexed immuno-
fluorescence platform®. This dataset (“Orion-CRC”) consists of co-
stained, paired H&E and mIF whole slide images (WSIs). In our analysis,

we sample fifty 3000px by 3000px samples from 5 WSIs and evaluate
ROSIE on its prediction performance of 17 overlapping protein bio-
markers measuring using Spearman rank correlation. Supplementary
Fig. 8 shows that on a dataset produced from a different mIF imaging
platform than CODEX, ROSIE performs well on a subset of the bio-
markers but also struggles in several biomarkers (e.g., ECad).

A simple metric for postprocessing and filtering in silico staining
quality

Batch effects, or variations across histopathology samples due to
factors like staining quality, tissue type, and artifacts, can significantly
affect deep learning model generalizability’>®. It is desirable, there-
fore, to be able to predict which samples might be of lower quality due
to batch effects and exclude them from downstream analyses.

To this end, we introduce two simple but effective heuristics for
scoring predicted samples on staining quality: dynamic range, which is
a measure of the difference between the 99th and 1st percentile values
in a biomarker stain; and W1 distance, which is the average Wasserstein
distance between a test H&E image’s histogram distribution and all
histogram distributions from the training H&E image dataset. Sup-
plementary Fig. 6 shows the effect of applying each quality filter to the
four evaluation datasets: using the median as a cutoff for out-of-
distribution samples, the average Pearson R score increases from
0.285 to 0.312 using W1 distance and to 0.336 using the dynamic range.
Panel A of Supplementary Fig. 6 illustrates the relationship between
the dynamic range and Pearson R score. Panel B likewise shows the
relationship between the predicted Wasserstein distance and Pearson
R score.

Biomarker predictions are useful for cell and tissue phenotyping
Given that the protein biomarker expressions generated by ROSIE
are highly correlated with ground truth measurements, we validate
their biological and clinical usefulness by using them in phenotyping
cells. To do this, we first train a nearest-neighbor algorithm to pre-
dict annotated cell labels on the ground truth CODEX biomarker
expressions. Then, we input the biomarker expressions generated
by ROSIE into the algorithm to produce cell type predictions. ROSIE
can predict seven cell types (B cells, Endothelial cells, Epithelial
cells, Fibroblasts, Macrophages, Neutrophils, and T cells) sig-
nificantly better than a model using cell morphology and H&E RGB
channels as inputs (cell morphology) or randomly assigning cell
types according to average sample proportions (bulk phenotyping)
(Fig. 3). Further analyses show strong B and T cell differentiation
from the cell type classification confusion matrix (Supplementary
Fig. 4). Furthermore, we perform cell phenotyping on the Ochsner-
CRC dataset and find that the labels produced by the ROSIE-gener-
ated biomarkers performed comparably to Stanford-PGC (average
F1 of 0.411 vs. 0.507, respectively) (Supplementary Table 2 and
Supplementary Fig. 4).

We also evaluate a top-performing cell phenotyping algorithm,
CellViT + +**, and compare its performance against ROSIE. CellViT + + s
a Vision Transformer model trained on H&E images to predict cell
phenotypes. To perform a side-by-side evaluation, we use the model
checkpoint that has been trained on the Lizard dataset® and reconcile
the cell types from Lizard and ROSIE into six categories: B cells, con-
nective, epithelial, neutrophils, T cells, and other. Supplementary Fig. 9
shows that ROSIE outperforms CellViT + + in predicting these cell types
from the Stanford-PGC dataset.

We are interested in whether these predictions validate ther-
apeutically relevant distinctions between tissues. Different tissue types
are typically known to be immunologically “hotter”, indicating greater
immune cell presence and infiltration, or “colder”, implying less
immune cell activity. For instance, pancreatic cancer (e.g., Stanford-
PGC dataset) is known to be “colder” while colorectal cancer (e.g.,
Ochsner-CRC dataset) is known to be “hotter”***. Indeed, our results
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Fig. 4 | Tissue structure discovery by ROSIE. Discovery of tissue structures using
biomarkers generated by ROSIE on the Stanford-PGC test dataset. Five tissue
structures are identified using a graph partitioning algorithm that clusters cells
based on their expression profiles and neighboring cells. This algorithm is per-
formed on both the ground truth measured and ROSIE-generated biomarker
expressions and then reconciled to a common label set. A Visualizes several
representative samples of tissue structures discovered using the ground truth
CODEX measurements, ROSIE-generated expressions, and the morphology baseline
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method. B Left: We report the F1 score (V= 635,649 cells) by comparing the
structures discovered using ground truth, ROSIE-generated biomarkers, and mor-
phology features. Data are presented as mean values with error bars as the 95%
bootstrapped confidence intervals. Right: ARI score is also reported by comparing
the unlabeled discovered clusters, where each dot is a sample. Box plots show the
median (center line), 25th and 75th percentiles (box edges), and the minimum and
maximum values.

reflect this immunological validity check, with the immunologically
“colder” Stanford-PGC having a lower predicted average proportion of
T cells per sample of 20.0% (vs. 21.1% ground truth) and the immu-
nologically “hotter” Ochsner-CRC having 40.1% T cells per sample (vs.
30.6% ground truth).

We also extend our method beyond single-cell phenotyping and
demonstrate its effectiveness in identifying tissue structures within a
sample. We use a top-performing tissue structure identification algo-
rithm, SCGP*®, which projects the acquired tissue sample into a graph,
with nodes as cells and edges as neighboring cell pairs. Using this
graph structure, the algorithm performs unsupervised clustering to
discover tissue structures based on the ground truth and ROSIE-
generated biomarker expressions separately. Figure 4 shows struc-
tures discovered in several samples and the reported Adjusted Rand
Index (ARI) and F1 scores by comparing the ground truth and gener-
ated expressions. Our method achieves average ARI and F1 scores of
0.475 and 0.624, respectively, and is significantly higher than a base-
line method of expressions generated from a three-layer neural net-
work using cell morphology features derived from cell segmentations
and mean H&E RGB values as inputs (ARI of 0.105 and F1 of 0.229). Full
scores are reported in Supplementary Table 3.

Additionally, we use the ROSIE-generated expressions to identify
two cell neighborhood phenotypes of interest: tumor-infiltrating
lymphocytes (TILs) and lymphocyte neighboring epithelial cells
(LNEs). These cell types are defined by their cellular niche and their
biomarker expression profile: TILs are lymphocytes that reside in
epithelial tissues, and LNEs are epithelial cells that neighbor lympho-
cytes. Figure 5 shows that the predicted proportions of TILs and LNEs
per sample in the Stanford-GPC test dataset are highly correlated with
the ground truth-derived proportions (Pearson R of 0.805 and 0.598
and Spearman R of 0.329 and 0.575 for TILs and LNEs, respectively),
suggesting that the ROSIE-generated expressions may be useful for

clinical tasks that involve estimating or ordering samples in a patient
cohort by the presence of specific biomarkers, cells, or cell
interactions.

Discussion

Our study aims to bridge the gap between abundant, inexpensive H&E
staining and the rich but more costly molecular information provided
by multiplex immunofluorescence (mlIF) staining. The primary ques-
tion we shed light on is the extent to which H&E stains embed mole-
cular hallmarks and features that could be computationally extracted.
Our results indicate that although H&E staining has been traditionally
limited in identifying few cell phenotypes, its structural and morpho-
logical features indeed contain significant information about protein
expressions when analyzed with deep learning generative Al methods.
This suggests that H&E staining has unrealized potential for use in
clinical decisions that traditionally require more complex and expen-
sive assays. Although prior work has focused on imputing up to several
markers at a time, our study is the first to use deep learning to learn the
relationship between H&E and up to 50 protein biomarkers at once.
This setting now enables a more comprehensive view of the tissue
microenvironment and offers more nuanced insights into specific
tumor and immune cellular phenotypes.

Recent advances in Transformer architecture-based foundation
models trained on histopathology images'®?>* show promise when
adapted and fine-tuned on a wide range of clinical downstream tasks.
However, our results indicate that such models still underperform our
significantly smaller convolutional neural network. For instance, a ViT-
L/16 Transformer model with over 300 M parameters pre-trained on
histopathology images still did not perform as well as ConvNext, a
50 M parameter CNN pre-trained on non-pathology images. Indeed, a
large-scale study comparing foundation and task-specific models*®
found that smaller task-specific models often outperform foundation
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neighborhood phenotypes of interest: tumor-infiltrating lymphocytes (TILs) and
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graph partitioning algorithm). LNEs are epithelial cells that have at least one
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lymphocyte as a neighbor. TILs are measured as the raw count per sample, whereas
LNEs are measured as the proportion of epithelial cells with lymphocyte neighbors.
A We visualize three samples (by median Pearson R) of TILs and LNEs based on

ground truth-derived and ROSIE-predicted expressions. B Scatter plots of pre-
dicted and ground truth measurements, where each dot represents a sample.

models, especially in scenarios with sufficient labeled training data.
Additionally, Transformer-based foundation models are significantly
more computationally expensive to train due to their larger model
sizes. We offer several potential explanations for this counterintuitive
finding: First, the inductive biases of convolutional operations in CNNs
are better suited for extracting local contextual features from patch-
based histology imaging; second, larger foundation models are harder
to train and may overfit easier to the training data—indeed, we
observed that the performance of the larger Vision Transformer
models plateaus earlier in the process than compared to a CNN. This
result suggests the importance of future research in analyzing when
large foundation models are more appropriate than smaller CNNs.
We further demonstrated that our pixel-level CNN-based
approach outperforms prior GAN-based methods in both accuracy and
training stability. While GANs have been used for in silico staining, they
face several limitations: (1) evaluation in prior literature has focused
primarily on visual metrics such as SSIM rather than biologically
meaningful accuracy, (2) instability during training due to the minimax
optimization process, especially when jointly predicting a large panel
of biomarkers (Supplementary Fig. 11), and (3) border artifacts

introduced by the patch-based processing of H&E inputs. In contrast,
our model trains with a single, stable MSE loss and scales effectively to
a 50-plex biomarker panel.

One focus of our study is on the rank correlation of our generated
expressions and cellular phenotypes. Strong rank correlations suggest
that the generated biomarkers are useful in clinical settings where the
relative ordering of the presence of a biomarker or phenotype is
important, e.g., finding patients that are the most receptive to a ther-
apy or predicting patient prognosis based on a specific biomarker. For
instance, we observe that while our model can effectively predict cell
neighborhood phenotypes (TILs and lymphocyte neighboring epi-
thelial cells), these predictions also exhibit biases in over- or under-
predicting the proportion or counts of these phenotypes. Despite
these biases, the relative ordering of these phenotypes is still largely
maintained and thus is still useful in the settings mentioned above.

Inter-batch effects due to staining technique, quality, and
machinery are known to cause variations in the image statistics of H&E
stains. Since predictions generated on H&E stains that significantly
deviate from the training data are expected to perform worse, we
propose two methods for quantifying the quality of generated mIF
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stains. We demonstrate that computing the dynamic range of pre-
dicted expressions and calculating the Wasserstein distance between
training and generated data image histograms both correlate well with
the empirical prediction accuracy. We believe these can be valuable
tools that accompany our deep learning framework, allowing users to
determine their clinically acceptable range of stain generation quality.

We acknowledge several limitations with our data and framework.
Though we perform quality control on each sample (see Supplemen-
tary Methods), the alignment of H&E and CODEX images is susceptible
to artifacts such as fraying, which can lead to misalignments and affect
the accuracy of predictions. Second, not every biomarker is equally
represented in the training data—this data imbalance is one reason why
our performance on certain biomarkers is poor. We attempted to
mitigate this by oversampling underrepresented biomarkers but did
not observe significant improvement over equal sampling. As a result,
we focus our phenotyping analysis on using the top 24 biomarkers,
where performance is the most robust. Nonetheless, we observed
experimental benefit from training on the full 50-plex panel versus a
smaller panel (e.g., 10 and 24) even when evaluating only on the
smaller panels. We hypothesize that training on a larger set encourages
information sharing between the neural network layers and thus
improves the overall predictive performance on the analyzed subset.
An additional benefit of this approach is that in the ConvNeXt model
architecture, all biomarkers are predicted from a shared embedding
space (penultimate layer of the model), so biomarkers that are related
to or a subset of other ones share the same representations in
the model.

Another potential limitation in our approach is that there are
limited context windows around cells. Given the model constraints, we
experimented with larger context windows (i.e. 256 x 256px) but did
not improve model performance. At the standard 40x magnification
for H&E scanning, our current 128 x 128px window typically includes
around thirty cells or a 3-hop neighborhood of cells, which would
include information about not only the center cell but its surrounding
niche. Additionally, all data collected and imaged in our study was
performed in-house on the same experimental setup (e.g., H&E scan-
ner, PhenoCycler Fusion). Due to this uniformity, we have limited
experimental evidence demonstrating our model’s robustness on data
sourced from significantly different environments, as batch effects
from different reagents and protocols would be expected to be more
significant. Our evaluation on the Orion-CRC dataset highlights the
performance of ROSIE when pushed to the boundaries of general-
izability (different imaging platform, disease type, and clinical site):
while we observe robust prediction on some biomarkers (e.g., CD45),
other biomarkers underperform (e.g., ECad). These results imply fun-
damental limitations of ROSIE to easily generalize across multiple
sources of variability without additional adaptation such as re-training.
We look forward to additional validation of our method as more paired
H&E/mIF data is made publicly available.

Due to the variability in biomarker performance across the full
panel, ROSIE is not an appropriate replacement for a full-panel CODEX
experiment. The primary aim of our method of training on the full 50-
biomarker panel is to 1. maximize the amount of signal available to the
model via information sharing from different markers, and 2. deter-
mine in an unsupervised manner which markers are the most pre-
dictive. The inherent limitations of H&E staining mean that resolving
certain protein expressions (e.g., immune markers) are difficult with-
out additional assaying. However, we demonstrate that ROSIE can still
reveal significantly more information compared to the H&E stain alone.

Our study demonstrates a method for extracting multi-plex spa-
tially resolved protein expression from H&E stains. Given the ubiquity
of H&E staining in clinical workflows, a framework for enabling in silico
staining of dozens of spatially resolved protein biomarkers
offers enormous potential for improving clinical workflows and
decision-making. In silico staining can reduce the need for costly

immunostaining assays, significantly decreasing turnaround time and
associated clinical costs. Additionally, it can serve as a screening tool
using existing H&E slides from patient cohorts, enabling clinicians to
prioritize patients based on predicted therapeutic responses. Finally,
in resource-limited settings, in silico staining can democratize access
to advanced biomarker assays that would otherwise be unavailable. We
hope that future validation and continued improvements to ROSIE will
enable these use cases to be realized in real-world clinical settings.

Methods

Patient samples and data were obtained using institutional protocols.

CODEX data collection
All samples are prepared, stained, and acquired following CODEX User
Manual Rev C.

Coverslip preparation. Coverslips are coated with 0.1% poly-L-lysine
solution to enhance adherence of tissue sections prior to mounting.
The prepared coverslips are washed and stored according to the
guidelines in the CODEX User Manual.

Tissue sectioning. formaldehyde-fixed paraffin-embedded (FFPE)
samples are sectioned at a thickness of 3-5 um on the poly-L-lysine
coated glass coverslips.

Antibody conjugation. Custom conjugated antibodies are prepared
using the CODEX Conjugation Kit, which includes the following steps:
(1) the antibody is partially reduced to expose thiol ends of the anti-
body heavy chains; (2) the reduced antibody is conjugated with a
CODEX barcode; (3) the conjugated antibody is purified; (4) Antibody
Storage Solution is added for antibody stabilization for long term
storage. Post-conjugated antibodies are validated by SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) and quality control
(QQC) tissue testing, where immunofluorescence images are stained
and acquired following standard CODEX protocols, then evaluated by
immunologists.

Staining. CODEX multiplexed immunofluorescence imaging was
performed on FFPE patient biopsies using the Akoya Biosciences
PhenoCycler platform (also known as CODEX). 5 pm thick sections
were mounted onto poly-L-lysine-treated glass coverslips as tumor
microarrays. Samples were pre-treated by heating on a 55°C hot
plate for 25 minutes and cooled for 5minutes. Each coverslip was
hydrated using an ethanol series: two washes in HistoChoice Clearing
Agent, two in 100% ethanol, one wash each in 90%, 70%, 50%, and
30% ethanol solutions, and two washes in deionized water (ddH20).
Next, antigen retrieval was performed by immersing coverslips in
Tris-EDTA pH 9.0 and incubating them in a pressure cooker for
20 minutes on the High setting, followed by 7 minutes to cool. Cov-
erslips were washed twice for two minutes each in ddH20, then
washed in Hydration Buffer (Akoya Biosciences) twice for two min-
utes each. Next, coverslips were equilibrated in Staining Buffer
(Akoya Biosciences) for 30 minutes. The conjugated antibody cock-
tail solution in Staining Buffer was added to coverslips in a humidity
chamber and incubated for 3 hours at room temperature or 16 hours
at 4°C. After incubation, the sample coverslips were washed and
fixed following the CODEX User Manual. Additional antibody infor-
mation including clone name, barcode number, and reporter name is
available at: https://gitlab.com/enable-medicine-public/rosie/-/blob/
main/Antibody%20Information.xIsx.

Data acquisition. Sample coverslips are mounted on a microscope
stage. Images are acquired using a Keyence microscope that is con-
figured to the PhenoCycler Instrument at a 20X objective. All of the
sample collections were approved by institutional review boards.
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To correct for possible autofluorescence, “blank” images were
acquired in each microscope channel during the first cycle of CODEX
and during the last. For these images, no fluorophores were added to
the tissue. These images were used for background subtraction.
Typically, autofluorescence will decrease over the course of a CODEX
experiment (due to repeated exposures). Thus, to correct each cycle,
our method determines the extent of subtraction needed by inter-
polating between the first and last “blank” images.

Sample preprocessing

Samples are first stained and imaged using CODEX antibodies on the
Akoya Biosciences PhenoCycler platform and then stained and imaged
with H&E on a MoticEasyScan Pro 6 N scanner with default settings and
maghnification (40x). The CODEX DAPI channel and a grayscale version
of the H&E image are used to perform image registration. Both images
have their contrast enhanced using contrast-limited adaptive histo-
gram equalization. The SIFT features* of each image are then found
and matched based on the RANSAC algorithm* to find an image
transformation from the H&E image to the CODEX coordinate space.
The transformation was limited to a partial affine transformation
(combinations of translation, rotation, and uniform scaling). If the
initial alignment based on the grayscale H&E image was not successful,
the process was repeated using the nuclear channel of the decon-
volved H&E image (using a predetermined optical density matrix**) or
individual color channels of the H&E image. The H&E stains were
performed centrally on-site using standard staining protocols. How-
ever, inter-user variability such as staining durations and slide handling
techniques may have contributed to batch effects. Such variability
introduces potential sources of technical heterogeneity, which could
impact the consistency of tissue staining quality and consequently
influence downstream analytical results.

Training details

The training process is visualized in Fig. 1B. Each sample was first split
into patches. In our standard approach, we subdivided a sample into
non-overlapping 8x8px patches. The average expression within each
patch is computed for every CODEX biomarker. Then, a 128 by 128px
H&E patch is extracted centered on the 8x8px patch, which is used as
input to the model. Thus, for instance, a 1024px by 1024px sample
would yield a prediction of 128px by 128px resolution, as each 8px by
8px patch is represented by a single pixel prediction. Our model is
based on a ConvNext-Small architecture with 50 M parameters. The
model is pre-trained on the ImageNet image dataset. During training,
random augmentations are performed: horizontal and vertical flip-
ping, brightness, contrast, saturation, hue jittering, and normalization
are all performed. The training task consists of the model predicting
the mean expression of the center 8 x 8px of a 128 x 128px patch for
each biomarker. Thus, the model performs multitask regression (i.e., a
50-length vector) for a given patch. Model validation during training is
performed using two metrics: Pearson R and SSIM (Structural Simi-
larity Index Measure). Pearson R is a correlation metric used to assess
the similarity between the measured and predicted expressions; SSIM
is a similarity metric that assesses the qualitative similarity between
two samples. Pearson R is computed across patches, while SSIM is
computed on the reconstructed samples. This is to evaluate the
model’s predictions both in terms of biological accuracy and visual
similarity.

Each study has a different biomarker panel, so to account for
missing biomarkers, we used a masked mean squared error loss where
only the loss over present biomarkers is computed.

Training is performed on 4 V100 GPUs with a batch size of 256 and
a learning rate of le-4 with the Adam** optimizer on a schedule that
reduces by half every 30K iterations. Models are trained until no
improvement in this metric is observed for 75K steps. On the same
hardware, evaluation of a single TMA core takes approximately

5minutes. Given that the ConvNext model is relatively lightweight
(~50 M parameters), it can also be deployed on a single on-premise,
consumer-grade GPU or CPU. Model training and evaluation are per-
formed with Python using the torch®, pytorch-geometric*®, scikit-
learn*, and scipy*® packages.

A description of the different studies comprising the full training
dataset, including disease type, number of cells and samples, and
biomarker panel, are available at https://gitlab.com/enable-medicine-
public/rosie/-/blob/main/Training%20Datasets.csv.

Sample generation

Inference is performed on the foreground H&E patches and then stit-
ched into the predicted sample. In the standard analyses presented, a
stride of 8px is used, which produces a predicted image that is 8x
downsampled from the original image size. This produces predictions
at a resolution of 3.02 microns per pixel. Using this image, we then
produce cell-level expression predictions by upsampling the predicted
image to the native resolution and then computing the average
expression per cell based on the cell segmentation mask. The ROSIE-
generated images are saved in TIFF image format, which are identical
to the CODEX-measured images. Thus, any downstream analyses that
can be performed on CDOEX data can similarly be performed on
ROSIE-generated data.

To produce higher-resolution images, we also demonstrate the
predictions using 1px strides. In this setting, overlapping patches are
generated at 64x the number of total predictions. This setting pro-
duces predictions at a resolution of 0.3775 microns per pixel. The
resulting images are demonstrated and compared to the standard 8px
setting in Supplementary Fig. 5.

Quality control

We introduce two quantitative metrics for determining whether an
H&E sample is in distribution and a high-quality generation. First, we
measure the deviation between the image intensity distributions of a
test H&E sample and the H&E samples in the training data. For a given
test and training image pair, we extract 256 histogram bins from the
image to obtain discrete distributions and then compute the Wasser-
stein (or Earth Mover’s) distance (also called W1 distance) between the
two distributions. The quality metric for a given test image, then, is
computed as the average W1 distance across all training images. By
using this metric, we can a priori determine whether a test sample is in
distribution and appropriate for evaluation.

Additionally, at the biomarker channel level, we use the dynamic
range as a simple proxy for estimating the quality of a predicted
sample. Since channels with very low maximum expression correlate
with poor quality acquisitions (due to artifacts, staining issues, etc.), we
set a threshold below which we exclude biomarkers from evaluation.
Dynamic range is computed as the difference between the 99th and 1st
percentile values in a generated biomarker stain. Since the dynamic
range is only a function of the predicted image, it does not depend on
having ground truth CODEX measurements for an H&E sample.

Expression metrics

We report three primary evaluation metrics for patch-level predic-
tions: Pearson R (sklearn.metrics.pearsonr), Spearman R (sklearn.me-
trics.spearmanr), and concordance index, or C-index (lifelines.utils.
concordance_index). Pearson correlation is a measure of the linear
relationship between the ground truth and predicted biomarker
expressions. Additionally, we report two rank metrics (Spearman R and
C-index) to assess the model predictions’ usefulness in clinical tasks
that rely on ordering patient samples by a specific biomarker expres-
sion or cell type count. Pearson and Spearman correlations are calcu-
lated as the average correlations across all ground truth and predicted
CODEX patches. C-index is computed on the 75th percentile values for
both ground truth and predicted CODEX for each biomarker and

Nature Communications | (2025)16:7633

10


https://gitlab.com/enable-medicine-public/rosie/-/blob/main/Training%20Datasets.csv
https://gitlab.com/enable-medicine-public/rosie/-/blob/main/Training%20Datasets.csv
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62346-0

across all samples. Only during training, SSIM is computed across
ground truth and predicted images. To ensure that the metrics are
calculated on valid data points, we exclude patches with a lower
groundtruth expression value than the 90th percentile value of back-
ground noise for each biomarker.

Baseline methods
We also introduce several baseline methods for comparison to ROSIE:

First, we use the H&E sample alone to predict CODEX expression
(called H&E expression). In this method, we apply a simple threshold
(>50), averaged across the three color channels, and then use the
intensity to predict each biomarker. This is to evaluate the similarity of
the hematoxylin and eosin stains to the CODEX stains and to validate
that the model is not simply recapitulating stain intensity in its CODEX
predictions.

Second, we compute morphology statistics based on the seg-
mentation masks calculated from the DAPI channel (called cell mor-
phology). Cell segmentation is performed using the DeepCell
algorithm*. We use the HistomicsTK compute_morphometry features
function and extract 19 features in total: Orientation, Area, Convex Hull
Area, Major Axis Length, Minor Axis Length, Perimeter, Circularity,
Eccentricity, Equivalent Diameter, Extent, Minor to Major Axis Ratio,
Solidity, Hu Moments (1st to 7th). In addition, we compute the average
across each of the RGB channels and include these as three additional
features. We train a three-layer multi-layer perceptron neural network
using these features as input to predict the expression of 50 protein
biomarkers. Each layer has 100 nodes followed by a ReLU activation
function and is trained with a 1le-4 learning rate, mean squared error
loss, and Adam optimizer. The weights that generated the best vali-
dation accuracy after 50 epochs are used. This is a stronger baseline
that is intended to represent typical features (morphology and inten-
sity) derived from H&E images. Finally, as an additional baseline for cell
phenotyping, we assign cell labels randomly according to the average
ground truth cell label proportions across all samples (called bulk
phenotyping). This method approximates estimating cell type pro-
portions through a cheaper, more readily available phenotyping
technique than CODEX (like flow cytometry) and then using them to
infer spatially located cell types.

To train the pix2pix GAN model, we use the pix2pix model
architecture” and software package and randomly sample 256px by
256px H&E and CODEX patches from the Stanford-PGC training data-
set. The model is trained to predict the 50-channel CODEX output
image based on the H&E input. The model is trained for 50 epochs with
100 patches randomly chosen from each sample. The full imple-
mentation and code are provided in the Gitlab repository.

Cell phenotyping

Cell phenotyping metrics are computed using the following steps: First,
cell clusters are produced using Leiden clustering based on the cell-level
CODEX measured expressions. These clusters are identified and merged
based on cell expression within each cluster to produce manually
annotated cell labels. Then, we trained a k-nearest neighbors algorithm
(where k=100) to generate a graph based on these clusters, which is
used to automatically generate the reference cell labels. To prevent class
imbalance, we sample from each cell label class with equal proportion
for the training set. We use the same kNN and the predicted expressions
to generate the predicted cell labels. We report the F1 scores, which are
relative to the cell typing determined using clustering on the CODEX
measurements. In this analysis, we use only the top 24 biomarkers by
Pearson correlation as input features to the kNN algorithm. Supple-
mentary Fig. 7 shows the mean biomarker expressions for each defined
cell type. For cell phenotyping performed on Ochsner-CRC, we similarly
train a kNN on manually annotated cell labels and use it to generate
reference cell labels. For uniformity of comparison, we define the same
cell phenotypes as in the Stanford-PGC dataset.

To perform a cell phenotyping comparison with CellViT + +, we use
the model checkpoint that has been trained on the Lizard dataset™ since
the cell definitions most closely match the set derived in our analyses.
We reconcile the cell types from Lizard and ROSIE into six categories: B
cells, connective, epithelial, neutrophils, T cells, and other. Given that
the CellViT ++ algorithm jointly performs segmentation and pheno-
typing, we also reconcile the cell segmentations produced by the algo-
rithm and our DAPI-derived segmentations by only including the
intersecting set of cells from both sets. This yields a total of 220K cells
when evaluated on the Stanford-PGC evaluation dataset.

Tissue structure discovery
The Spatial Cellular Graph Partitioning (SCGP) framework®® is sum-
marized in the following steps:

1. Construct a graph with cells as nodes. Spatial edges are added
between neighboring cell pairs, and feature edges are added for
cell pairs with similar expression profiles.

2. Partitions are detected by community detection algorithms such
as the Leiden algorithm®.

3. Each partition is manually annotated based on its underlying
expression profile and cell morphology.

The above steps are performed independently on the ground
truth and H&E imputed mIF samples, and a mapping from the imputed
partitions to the ground truth partitions is calculated. Finally, we
compute the adjusted Rand Index (ARI) and F1 scores. ARl measures
the similarity between the ground truth and imputation-derived par-
titions and does not require cluster labeling; the F1 score is computed
over manually annotated labels. As a baseline, we perform the parti-
tioning over morphology features extracted from the cell segmenta-
tions, as well as adding in the average RGB expressions per cell.
Supplementary Fig. 7 shows the mean biomarker expressions for each
defined tissue structure.

Cell neighborhood phenotyping

To define cell neighbors, we first perform cell segmentation on the
DAPI channel for each sample. Based on the computed cell centroids,
we then construct a Delauney triangulation and Voronoi diagram,
from which we then construct a graph with cells as nodes and
Delauney neighbors as edges. To define lymphocyte neighboring
epithelial cells, we identify epithelial cells and then find the subset of
these cells that share an edge with a lymphocyte (B cell or T cell). The
reported percentage of LNEs is defined as the proportion of epithe-
lial cells in a sample that are LNEs. Additionally, we define tumor-
infiltrating lymphocytes (TILs) as lymphocytes embedded in tumor
regions. To identify TILs, we find lymphocytes that are assigned to
epithelial tissue structures. For each sample, we report the raw count
of TILs.

Gradient heatmaps

To interpret how ROSIE generates biomarker predictions from H&E
images, we apply Gradient-weighted Class Activation Mapping (Grad-
CAM)* to visualize the spatial regions within an input patch that
influence the model’s predictions. Specifically, we use the gradients
of each biomarker’s output with respect to the final convolutional
feature maps to compute a weighted sum of activations, producing a
heatmap that localizes the regions most relevant to the prediction.
These gradients are globally average-pooled across the spatial
dimensions to obtain a set of weights, which are then multiplied by
the corresponding activation maps, summed, and upsampled to
produce a localization map.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analysis after initial aggregation of the full
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training and evaluation datasets. Data splits (e.g., training, validation,
testing) were performed on the coverslip level, with splits randomly
chosen among coverslips. The investigators were not blinded to allo-
cation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data are available in the main text or the supplementary materials.
The raw training data are not available due to licensing and data
privacy restrictions. Model weights are available upon request by
contacting eric@enablemedicine.com. Source data are provided with
this paper.

Code availability
The full code repository, including files for evaluating ROSIE, are
available at https://gitlab.com/enable-medicine-public/rosie.
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