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Abstract

Cellular organization is central to tissue function and homeostasis, influenc-
ing development, disease progression, and therapeutic outcomes. The emergence
of spatial omics technologies, including spatial transcriptomics and proteomics,
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has enabled the integration of molecular and histological features within tis-
sues. Analyzing these multimodal data presents unique challenges, including
variable resolutions, imperfect tissue alignment, and limited or variable spa-
tial coverage. To address these issues, we introduce CORAL, a probabilistic
deep generative model that leverages graph attention mechanisms to learn
expressive, integrated representations of multimodal spatial omics data. CORAL
deconvolves low-resolution spatial data into high-resolution single-cell profiles
and detects functional spatial domains. It also characterizes cell-cell interac-
tions and elucidates disease-relevant spatial features. Validated on synthetic
data and experimental datasets, including Stero-CITE-seq data from mouse
thymus, and paired CODEX and Visium data from hepatocellular carcinoma,
CORAL demonstrates robustness and versatility. In hepatocellular carcinoma,
CORAL uncovered key immune cell subsets that drive the failure of response to
immunotherapy, highlighting its potential to advance spatial single-cell analyses
and accelerate translational research.

Keywords: Spatial omics integration, single-cell deconvolution, deep generative
model, spatial biology, tumor microenvironment

Introduction

Understanding the spatial organization of cells within tissues is fundamental for
deciphering the mechanisms underlying tissue function, development, and diseases.
Emerging spatially resolved omics technologies have transformed our ability to study
complex tissues by in situ measurements of molecular profiles, including gene and
protein expression, epigenetic marks, and chromatin structure [1–4]. These innova-
tions have demonstrated tremendous potential in advancing research across diverse
fields, including neuroscience [5], cardiovascular pathology [6, 7], cancer biology
[2, 8, 9] and developmental biology [10]. The integration of multiple spatial omics
modalities offers an exciting opportunity to comprehensively dissect tissue complex-
ity. By combining information across molecular dimensions—such as genes, proteins,
and metabolites—spatial omics integration provides a more detailed and nuanced
understanding of the intricate microenvironments within tissues.

However, integrating data from distinct spatial omics modalities remains challeng-
ing [1]. First, multiomics measurements are often performed on adjacent rather than
identical slides, leading to potential discrepancies between cells profiled in different
modalities. Second, the spatial resolutions of multiomic measurements are not always
consistent. Third, the number of genes, proteins or other molecules measured across
different samples can differ. Additionally, the quality of spatial omics data can vary
significantly between modalities, further complicating integration efforts. For example,
a recent study of glioblastoma [11] used Visium platforms for whole transcriptomic
profiling but with spatial spots resolution (each may contain 1-10 cells), along with
CODEX platforms for spatial proteomics, which typically measure only tens of proteins
at single-cell resolution. This makes the joint single-cell ontology analyses challenging.
These challenges underscore the need for methods that can effectively learn a latent
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representation of the raw measurements that incorporates variability of features from
multiple assays, and improve the accuracy and resolution of each modality to provide
a more comprehensive and precise biological landscape of complex tissues.

Existing approaches for integrating single-cell multiomics, such as Seurat v4 [12],
MOFA+ [13], and totalVI [14], have made significant strides in leveraging multimodal
data to provide a unified representation of cellular states and multimodal relationships.
However, these methods missed the modeling of spatial contexts, which are critical
for understanding cell-cell interactions within their native tissue environments. While
advancements have been made in integrating spatially resolved data, many methods
focus only on combining histology and spatial transcriptomics [15–17], or only designed
for deconvoluting spatial low resolution data referenced on single-cell data such as
SpatialScope [18]. SLAT [19] and MIIT [20] primarily address workflows for register-
ing neighboring tissue sections, such as spatial transcriptomics and mass spectrometry
imaging, but not leveraging these data to uncover biologically functional tissue regions
or infer cellular behaviors. Additionally, models such as MEFISTO [21], SpatialGlue
[22] and SpaMosaic [23], provide frameworks for spatial integration but are primar-
ily focused on domain detection, lacking biologically interpretable capabilities and
resolution flexibility.

To overcome these limitations, we introduce CORAL (Comprehensive spatial
Omics Registration and Analysis for Learning spatial features), a probabilistic,
graph-based method designed to integrate diverse spatial omics datasets. Taking mul-
timodality molecular profiles of unmatched spatial resolution and detected features,
CORAL generates single-cell embedding with information from both data modalities,
deconvolves the lower-resolution modality to infer its profile in individual cells, and
predicts interactions between neighboring cells. We validated CORAL using multiple
synthetic datasets, spatial CITE-seq datasets from mouse thymus, and paired CODEX
and Visium data from hepatocellular carcinoma (HCC) samples treated with anti-PD1
therapy. CORAL successfully delineated the tissue ecosystems in HCC and identified
macrophages as key players interacting with CD4+ T cells, mediating immunosuppres-
sive interactions that hinder PD1 immunotherapy responses. Overall, CORAL provides
a nuanced and accurate representation of cellular heterogeneity, spatial organization,
and underlying molecular mechanisms within complex tissues, offering a powerful
framework for the in-depth exploration of spatially resolved molecular landscapes.

Results

Overview of CORAL model

CORAL is designed to delineate single-cell spatial contexts by integrating spatial
multi-omics data that vary in spatial resolution and molecular features depth (Fig. 1a).
The primary objective of CORAL is to predict single-cell resolution molecular profiles
within a spatial context by combining the strengths of various spatial omics tech-
nologies at cellular resolution or feature throughput. CORAL employs a multimodal
approach that captures interactions between molecular layers through a cross-attention
mechanism and derives a joint latent representation of cells. Using graph attention
layers, the model learns the relationships between neighboring cells, which allows
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Fig. 1: CORAL enables multimodal integration for high-resolution molecu-
lar mapping at the single-cell level. a, Conceptual overview of CORAL. CORAL
integrates spatial omics data across multiple modalities with distinct spatial resolu-
tions. Modality 1 represents lower-resolution spot-based platforms (e.g., Visium), while
Modality 2 captures higher-resolution cell-level features (e.g., CODEX). For each indi-
vidual cell in Modality 2, CORAL aligns spatially adjacent spots from Modality 1. The
model reconstructs shared latent variables reflecting the spatial organization of the
tissue and performs deconvolution to resolve lower-resolution spot data into cell-level
molecular profiles. CORAL further identifies spatially variable features through hier-
archies and leverages graph attention networks to model cell-cell interactions within
their local environment. b, Graphical model of CORAL. Dotted lines indicate the
inference process, and solid lines represent the generative process. c, CORAL inte-
grates spatial multi-omics data by aligning high-resolution cellular data (Modality 2,
e.g., protein expression from CODEX) with neighboring lower-resolution spot data
(Modality 1, e.g., gene expression from Visium). The framework first constructs local
subgraphs for each cell, incorporating molecular features from its spatial neighbors
to capture the local cellular context. The encoder processes these combined features
to deconvolute spot-level data, enabling single-cell resolution for gene expression. A
graph attention mechanism using graph attention networks (GAT) then models cell-
cell interactions, while contrastive learning optimizes the representation of cell types,
encouraging similarity among cells of the same type while distinguishing between
different types. CORAL outputs include predictions for single-cell transcriptomics,
spatial organization, and inferred cell-cell communication, providing a comprehensive
molecular map at the single-cell level.
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incorporation of spatial dependencies into the latent representations and prediction
of cell-cell interactions. Finally, CORAL’s probabilistic framework allows it to inte-
grate data with different spatial resolutions. As a result, it enables the deconvolution
of lower resolution spatial data (e.g. Visium) by inferring single-cell expressions from
aggregated spot-level data. This is complemented by a flexible variational inference
mechanism that models both shared and modality-specific latent variables, thereby
preserving the unique information contained within each omics modality while inte-
grating them into a cohesive spatial context (Fig. 1b, Methods). Furthermore, CORAL
infers a hierarchical variable associated with spatially variable features (Fig. 1a).

Two aligned modalities are required as inputs, not necessarily sharing the same
spatial resolution. When multi-omics data are obtained from different tissue sections,
preprocessing steps are typically required. These include cropping overlapping areas,
registering tissues, or aligning images using methods like scale-invariant feature trans-
form (SIFT), SLAT [19] or MIIT [20]. The processed data consists of combined
expression matrices derived from individual cell locations or spatial spots (Fig. 1c,
Methods). Spatial spots represent collections of cells within localized tissue regions
due to resolution limitation of the technology, but usually have a wider range of
molecules detected. In contrast, cell locations provide higher spatial resolution but are
typically limited to a smaller number of molecular features. CORAL also takes coarse
annotations of major cell types for single cells (e.g., from CODEX). These annota-
tions could be based on pre-existing labels or simple clustering approaches, such as
unsupervised manifold separation. However, due to the limited number of markers
available, it often fails to accurately distinguish subtypes or even major cell types.
By integrating data from low-resolution modalities with deeper molecular profiling,
CORAL refines and enriches cell type annotations, enhancing resolution and providing
additional molecular features at the single-cell level.

CORAL begins by mapping each cell to its nearest lower-resolution spot based on
spatial proximity. This alignment spatially integrates the datasets and combines molec-
ular profiles from both modalities for each cell. Local sub-graphs centered around each
cell were constructed, incorporating data from spatially neighboring cells to capture
the local spatial context and interactions among cells. An encoder network processes
the combined expression data of these sub-graphs, deconvoluting mixed spot-level gene
expression data into single-cell-level expression. This deconvolution allows the model
to separate the contributions of individual cell types within each Visium spot. To
learn deconvolving, a contrastive loss function was incorporated that encourages cells
of the same type to exhibit similar expression profiles while distinguishing them from
cells of different types. CORAL also implements a graph attention layer that learns
cell-cell interactions within the spatial graph by computing attention weights based
on spatial proximity. This mechanism allows the model to focus on local interactions
and effectively capture spatial patterns. Furthermore, it includes a layer dedicated to
identifying spatial domains (Methods). This layer captures higher-level spatial struc-
tures by aggregating information across cells and their neighbors, enabling the model
to recognize and characterize spatial domains - regions within tissue that share com-
mon molecular features and neighboring cell identities. By detecting these spatial
domains, CORAL enhances the understanding of tissue organization and function,
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providing insights into how cells interact within their microenvironments and con-
tribute to overall tissue architecture. To optimize its performance, reconstruction losses
were utilized to tailored to each modality and enforces spatial smoothness through
Laplacian regularization while modeling complex dependencies via Kullback-Leibler
divergence terms. This strategy allows CORAL to leverage the strengths of different
spatial omics modalities, providing a comprehensive and high-resolution view of the
molecular landscape at single-cell resolution.

To evaluate it’s performance in spatial domains detection and spot deconvolution,
we first compared it against state-of-the-art methods (totalVI, COVET, SpatialGlue,
and spatialScope) using both synthetic and real datasets. These datasets included syn-
thetic data provided by SpatialGlue, truncated and downsampled MERFISH mouse
cortex data, and synthetic spatial CITE-seq data produced with scDesign [24]. We then
demonstrated CORAL’s utility through two in-depth case studies. In the mouse thy-
mus, it effectively characterized tissue structures and tracked immune cell maturation.
In human hepatocellular carcinoma, it delineated immune-tumor interactions, uncov-
ering key ecosystem features that contribute to the suppression of immunotherapy
responses.

Coral enables integrated single-cell spatial context delineation
for synthetic multi-omics data

We evaluated CORAL across four key functionalities: predicting spatial domains,
deconvoluting spot-resolution modalities into single cells, identifying spatial variables
factors, and predicting cell-cell interactions. While no method currently achieves all
four functionalities simultaneously, we benchmarked each functionality against similar
methods to validate efficiency and accuracy.

To assess the ability to identify spatial domains using integrated multimodal data,
we first used the simulated dataset in SpatialGlue that included both transcriptomic
and proteomic profiles [22]. To further simulate the spatial resolution differences
between modalities, we intentionally reduced the spatial resolution of one modal-
ity (modality 1) by aggregating the neighboring cells (Supplementary Fig. 1a). We
evaluated CORAL’s performance by comparing it with several baselines: modality
1 alone, modality 2 alone, the downsampled modality 1 alone, concatenated PCA
of both modalities, SpatialGlue, and totalVI. For this experiment, we processed the
downsampled modality 1 alongside the original modality 2. In contrast, methods
like SpatialGlue and TotalVI [14] that require both modalities to be at the same
resolution were run with the original high-resolution data. CORAL demonstrated
comparable performance to SpatialGlue in detecting spatial patterns and background
spatial factors (Supplementary Fig. 1b-c), as validated by multiple performance met-
rics, including homogeneity, mutual information, V-measure, and adjusted mutual
information (AMI). Both SpatialGlue and CORAL, which incorporate spatial neigh-
bor information and attention layers, significantly outperformed models like TotalVI,
which relies solely on single-cell resolution data (Supplementary Fig. 1d). Proper inte-
gration of two modalities greatly enhances the detection capabilities of spatial domains
and cell-cell interactions. In addition to domain detection, CORAL also improves
the spatial resolution of downsampled modalities. By comparing the deconvoluted
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Fig. 2: CORAL maps single-cell spatial context using truncated and down-
sampled MERFISH data. a, Spatial domains identified by CORAL, synthetic
modality 1 and synthetic modality 2 (colored by identified domains), compared to
ground truth (colored by cortical layers) in the mouse motor cortex. b, Performance
metrics (Homogeneity, Mutual Information, V-measure, Adjusted Mutual Informa-
tion (AMI), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI))
comparing CORAL’s spatial domain detection accuracy at varying levels of down-
sampling with alternative methods (COVET, Spatial Glue) and truncated MERFISH
data (Modality 2). A higher value for these metrics indicate better performance. The
downsampled scales (1,2,3,4) correspond to grid sizes of 20×60, 15×45, 10×30, and
5×15 respectively, representing an average of 1.5 cells, 2 cells, and 3.5 cells, and 12.5
cells per spot for synthetic modality 1 (Supplementary Fig. 2). CORAL consistently
outperformed synthetic modality 2 and SpatialGlue across all fours different mag-
nitude of sampling, and outperformed COVET with the highest magnitude of our
sampling (with grids number 5×15) Two-sided independent two-sample t-test was
performed on bootstrapped scores between SpatialGlue and CORAL (n=10), P val-
ues = 5.30× 10−26,= 9.55× 10−23,= 1.48× 10−17,= 1.39× 10−17,= 1.48× 10−17,=
4.89×10−3 respectively. c, Similarity scores (Cosine similarity and Pearson correlation)
between CORAL’s predictions and Spatial Scope across different downsampling scales.
Coral outperformed Spatial Scope across scale 1-3 though worse at scale 4 (downsam-
pling is 12.5 cells per spot for synthetic modality 2). A higher value for these metrics
indicate better performance. One-way anova test was performed on bootstrapped
testing (n=10), P values = 2.54e − 76 and = 7.64e − 90 separately, ****P<0.0001,
**P<0.01. d, UMAP projections of synthetic modality 2 (Left) and inferred high-
resolution/single-cell (Right) MERFISH data, with points colored by annotated major
cell type. e, Cluster separation ratio (Methods) across clusters of synthetic modality
2 and CORAL imputed high-res modality 2. A higher value for this metric indicate
better performance. It indicated CORAL successfully distinguished various cell types
and subtypes from the deconvoluted modality 1. f, Stacked bar plot showing cell type
proportions across a gradient of the spatial latent variable v, indicating a shift from
neuron to oligodendrocyte prevalence. The color of bars is the same as that in panel
d. g, Heatmap of expression of variables genes along inferred v, further indicating the
gene signature shifting from Neurons-like to oligodendrocytes.
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gene expression from the downsampled modality 1 with the original high-resolution
modality 1, we observed a high accuracy (Supplementary Fig. 1e-g).

To further explore model’s single-cell analysis capabilities, we applied it to a syn-
thetic MERFISH dataset of the mouse primary motor cortex [25], previously analyzed
by SpatialScope [18]. This dataset captures the laminar organization of the cortex,
served as a ground truth for spatial organization. We simulated two different modal-
ities: first, by downsampling the MERFISH data (Fig. 2a, Supplementary Fig. 2a)
noted as synthetic modality 1, and second, by truncating the gene set from 254 to 50
genes (synthetic modality 2). We compared CORAL’s performance against Spatial-
Glue and COVET[26] (Supplementary Fig. 2b-d) on spatial domain detection with
multiple downsampling ratio of modality 1, and found that (Fig. 2a-b), CORAL con-
sistently outperformed synthetic modality 2 and SpatialGlue across all fours different
magnitude of sampling, and outperformed COVET with the highest magnitude of
our sampling (with grids number 5×15) (Fig. 2b). Additionally, CORAL successfully
imputed single-cell resolution expression data from the downsampled modality, highly
correlated with the ground truth (Fig. 2c), and performed better than SpatialScope
[18], reinforcing it’s efficacy in reconstructing single-cell expression from low-resolution
modalities.

Furthermore, CORAL excels in identifying cell substates from truncated or low-
resolution data. For example, in modality 2 where the number of profiled genes were
limited, the capabilities to identify the fine cell states is limited (Fig. 2d). It success-
fully distinguished various cell types and subtypes from the deconvoluted modality
1, including subtypes of excitatory and inhibitory neurons, as well as other nonneu-
ronal cells, suggesting the importance of taking advantage of multiple data modalities
(Fig. 2d-e). The one-dimensional latent variable v compresses their molecular pro-
files and spatial contexts. In the MERFISH data, it corresponding to the change of
percentages of neurons (Fig. 2f), along with the gene signature (Fig. 2g). By pro-
jecting cellular measurements to v latent space, CORAL reveals underlying spatial
patterns that may not be apparent from gene space. Finally, to demonstrate that our
method can capture spatial networks, we predicted cell-cell interactions in cortical
layers(Supplementary Fig. 3). By integrating spatial proximity and molecular data,
CORAL quantified interactions between cell types in mouse brain, such as astrocyte-
neuron interactions, enabling potential comparisons of the functional dynamics of the
tissue across samples [27].

CORAL integrates RNA and protein data to refine tissue
domains and resolve single-cell heterogeneity.

Besides directly downsampling RNA features, we also evaluate CORAL’s performance
on more realistic paired single-cell RNA and protein data. We used scDesign3[24] to
simulated CITE-seq data based on a reference dataset [28] and assigned the differ-
ent cell types to different spatial regions with defined probabilities (Supplementary
Fig. 4). We also downsampled cells for the simulated RNA modality to mimic the dif-
ferent spatial resolutions between modalities (Fig. 3a). The simulated datasets kept
the original data structure of CITE-seq (e.g. gene-gene correlation, cell-cell distance),
and provide gold standard of cell types and associated spatial domains to benchmark
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Fig. 3: CORAL delineates single-cell spatial context in simulated spatial
CITE-seq data. a, Upper: Ground truth of cell types sampled from CITE-seq data
with immune cells forming domains as brain regions. Bottom: Cluster patterns identi-
fied on downsized RNA-sequencing, and proteins. The colors are clusters with the same
number as the ground truth of cell types. b, Spatial domains identified by CORAL
model, the colors are clusters with the same number as the ground truth of cell types.
c, benchmarking the spatial domains detction across modality 1 (RNA), modality
2(protein), PCA of two modalities, Spatial Glue, totalVI and Coral. All the number of
domains are equal to the ground truth of cell types. A higher value for these metrics
indicate better performance. CORAL outperformed all other methods, including Spa-
tialGlue, in classifying different cell types and map their associated spatial domains.
Two-sided independent two-sample t-test was performed on bootstrapped scores
between SpatialGlue and CORAL (n=10), P values = 1.47× 10−17,= 1.66× 10−18,=
4.25×10−17,= 4.18×10−17,= 4.26×10−17,= 4.02×10−17 respectively.****P<0.0001.
d, scatter plot of ground truth of single-cell modality 1 (RNA) and deconvoluted
modality 1, the color represented the density of the scatter plot. e, UMAP of modality
(proteins, low-plex) only and the imputated single-cell RNA (high-plex), colored by
ground-truth cell types. f, Intra-to-inter-cluster distance ratio between high-res pro-
teins and inferred high-res gene expression. Two-sided independent two-sample t-test
was performed. A higher value for this metric indicate better performance. The impu-
tation of CORAL addresses the challenge of cell-type identification that occurs in
protein data with a smaller number of features. P value = 4.0×10−18. ****P<0.0001.
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the performance of different models on spatial domain detection and cell-type classi-
fication. CORAL outperformed other methods, including SpatialGlue, in classifying
different cell types and map their associated spatial domains. For instance, CORAL
distinguished the spatial regions assigned to plasmacytoid dendritic cells (pDCs) and
dendritic cells (DCs), which cannot be identified with either modality without incor-
porating spatial information (Fig. 3b-c). Furthermore, CORAL effectively imputed
low-resolution RNA data into single-cell resolution (Fig. 3d, Supplementary Fig. 4e).
This imputation addresses the challenge of cell-type identification that occurs in pro-
tein data with a smaller number of features (Fig. 3e-f). Notably, the imputed single-cell
RNA data identified cell types that aligned with the domain detection results, showing
consistency in both tasks.

Dissecting fine structures and immune cell maturation
landscape in mouse thymus through CORAL

To demonstrate CORAL’s broad applicability to real data across a wide spectrum
of technology platforms, we applied it to Stereo-CITE-seq data from mouse thymus
section [29]. The thymus plays a critical role in the development and maturation of
T cells (thymocytes), and its architecture consists of lobules enclosed by a capsule,
with connective tissues separating the lobules (Fig. 4b)[30]. Stereo-CITE-seq enables
the measurement of both mRNA and protein at subcellular resolution, which pro-
vides a gold standard to evaluate CORAL’s capability to impute high resolution data
(Fig. 4a). To note, it’s not practical to measure full resolution always, thus a method
for resolution augmentation is necessary. We downsampled the RNA data to a lower
resolution and test if the joint analysis with CORAL could recover the high-resolution
profiles. Clustering with only one modality cannot capture the fine structures of the
thymus - protein data resulted in less accurate clustering and the downsampled RNA
data produced clusters at a lower resolution (Fig. 4a). In contrast, CORAL improved
the resolution of the RNA modality, refining regions that could only be identified with
the protein modality, such as the medulla, connective tissue structures, and the multi-
layered cortex. CORAL’s domain identification capabilities were comparable to those
of SpatialGlue (Fig. 4c) [22] despite working with lower resolutio input data, CORAL
performed nearly as well as full-resolution SpatialGlue. Additionally, CORAL achieved
the highest Moran’s I score, indicating higher correlation between cell embeddings in
spatial proximity (Fig. 4d).

The comparison of CORAL’s deconvoluted single-cell mRNA expression with
ground truth further confirmed its ability to improve the capabilities and resolution
of the modalities (Fig. 4e). The predicted single-cell RNA data exhibited a high accu-
racy when compared to the ground truth gene expression (Supplementary Fig. 5).
Furthermore, CORAL suggested strong interactions between cells in the outer cortex
region and other regions of the thymus(Fig. 4f). The one-dimensional spatial latent
variable v captures the transition from the medulla to the cortex in the mouse thy-
mus (Fig. 4g). We identified genes whose expression correlates with v, and found
that many play key roles in thymic development and T cell maturation. For exampe,
the metabolite transporter gene Slc13a3 is involved in regulaing cellular metabolism
within the thymus [31]. Additionally, the Alb gene, expressed by medullary thymic

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.01.636038doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.01.636038
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4: Coral dissects fine structures and gradient of immune cell matura-
tion in mouse thymus a, Expert-annotated region and cell types in mouse thymus.
b, Leiden cluster of downsampled modality 1: gene expression and modality 2: protein
expression in Stereo-CITE-seq data. c, Leiden clustering of spatial latent variables
identified by CORAL and SpatialGlue. The resolution of clustering was adjusted
to make same number (n=15) of clusters on CORAL and SpatialGlue samples.s.
d, Upper: benchmarking the spatial domains detection with metrics (Homogeneity,
Mutual Information, V-measure, Adjusted Mutual Information (AMI), Normalized
Mutual Information (NMI), Adjusted Rand Index (ARI)) across modality 1 (RNA),
modality 2(protein), PCA of two modalities, Spatial Glue, totalVI and Coral. All the
number of domains are equal to the ground truth of cell types. A higher value for
these metrics indicate better performance. Bottom: Moran’s I scores for each method.
Two-sided independent two-sample t-test was performed between SpatialGlue and
CORAL. P value=1.07×10−6. A higher value for Moran’s I scores indicates better per-
formance. e, UMAP of modality (proteins) only and the deconvoluted RNA, colored
by ground-truth cell types. f, Circular plot of cell-type interactions, where bar lengths
represent total mean interactions and band widths represent interaction strength of
cell-cell interactions across ground-truth regions of mouse thymus. CORAL suggested
strong interactions between cells in the outer cortex region and other regions of the
thymus. g, Stacked bar plot showing cell type proportions across a gradient of inferred
v, indicating a shift from medulla to cortex prevalence. The color of bars indicates
the CORAL cluster. h, Heatmap of scaled expression of variables genes along inferred
v, indicating gene signatures shifting from medulla to cortex. i, Lineplot of gene sig-
natures related to dentric cells, T cell maturation, and mTEC functiosn in medulla
along with the inferred v.
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epithelial cells (mTECs), functions as a tissue-restricted antigen in the thymus. This
expression contributes to the negative selection of self-reative T cells, which is essen-
tial for maintaining immune tolerance and preventing autoimmunity [32, 33]. The gene
Fgf9 plays a role in the maturation and structural development of thymic epithelial
cells, supporting thymic architecture and function [34, 35]. Furthermore, Cd244 and
Caml are both linked to the maturation of thymocytes. Cd244 is involved in immune
cell signaling, while Caml regulates calcium signaling, a critical process in thymocyte
development and function [36–38] (Fig. 4h). Consistently, the increased expression of
gene signatures related to T cell maturation has been identified along with the gradi-
ent of v, as well as the fluctuation of dendritic cell, and mTEC function in medulla
decreased, indicated the interpretability of v (Fig. 4i).

Uncovering tumor microenvironment in hepatocellular
carcinoma integrating CODEX and Visium with CORAL

To show how CORAL can recover clincally relevant biological signatures , we applied
CORAL to integrate and analyze CODEX and Visium data from two hepatocellular
carcinoma patients undergoing immune checkpoint therapy (Supplementary Fig. 6).
The dataset includes pretreatment biopsies and post-treatment samples from tumors
of two patients: P73 (a non-responder) and P84 (a responder). The CODEX platform
features immunofluorescent imaging of 51 markers at subcellular resolution, enabling
the identification of major cell types such as tumor cells, CD4+ T cells, macrophages,
and B cells. In contrast, Visium provides broad poly-A capture at spot-level resolution,
with each spot representing multiple cells. Each of these separate assays has techni-
cal limitations that make it difficult to comprehensively understand important tissue
microenvironments. By integrating these modalities, CORAL enhanced the resolution
of spatial data, enabling us to dissect the tumor microenvironment and identify reg-
ulatory mechanisms underlying the differential responses to immunotherapy. Using
CORAL, we first identified data-driven spatial domains reflecting tissue organization
in both modalities (Fig. 5a). These domains encompassed major cell types across the
samples (Supplementary Fig. 7a-b) and were further classified into three categories:
intratumoral domains, immune domains, and stromal domains. Intratumor domains
exhibited sample-specific characteristics. For example, domains labeled tumor-1 and
tumor-2 corresponded to pretreatment P73, while tumor-4 was associated with post-
treatment P73. Similarly, tumor-3 and tumor-7 were unique to pretreatment P84, while
tumor-6 was specific to post-treatment P84. Tumor-5, however, was shared between
P73 and P84, suggesting common spatial and molecular features in these HCC samples.

Immune domains quantified distinct immune cell distributions. For example,
immune-10, predominantly composed of CD4+ T cells and noticed as lymphoid aggre-
gates, was uniquely present in post-treatment P73 as lymphoid aggregates, while
immune-2, enriched with macrophages, was scattered across all samples (Fig. 5a).
Quantitative analysis of immune cell distances captured that macrophages were sig-
nificantly closer to tumor cells in the non-responder sample (P73) compared to the
responder sample (P84) (Fig. 5b). Conversely, CD8+ T cells were spatially excluded
in P73, indicating an immune-evasive tumor microenvironment. Notably, macrophage-
infiltrated domains, such as tumor-4 in P73, exhibited recruitment of CD4+ T cells,
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Fig. 5: Uncovering the tumor microenvironment in hepatocellular car-
cinoma by integrating CODEX and Visium through CORAL. a, Spatial
domains in hepatocelluar carcinoma identified by CORAL using CODEX and Visium
data across four samples (P73 pre-treatment, P73 post-treatment, P84 pre-treatment,
P84 post-treatment). CORAL identified 11 immune domains, 7 intratumor domains,
and 5 stromal domains across these samples. b, Distance of macrophages and CD8+
T cells tumor cells within intratumor domains. Intratumor domains are classified as
P73-pre, P73-post, P84-pre, P84-post, and shared domains (P73-post/P84-post). A
two-sided independent two-sample t-test was performed. c, Z-scaled scores for signaling
pathways across intratumor domains. d, Z-scaled expression of cytokine genes across
intratumor domains. e, Interaction score between major cell types across samples. f,
Scores of ligand-receptor interactions between CD4+ T cells and macrophages across
samples, computed using cellphoneDB. g, Scores of terminal exhaustion in CD8+ T
cells and anti-inflammatory activity in CD4+ T cells, along with inferred parameter
v. h, Z-scared scored of signaling pathways, along with inferred v across samples.
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further contributing to an immunosuppressive milieu. Cytokines are the major immune
recruitment factors, and typically are difficult to measure using in situ stains. Visium
transcriptomics can quantify these factors, but not identify their cell of origin. CORAL
also imputed single-cell-resolved transcriptomic data, effectively increasing resolu-
tion of downstream analysis (Supplementary Fig. 7c-d). Thus it facilitated a detailed
investigation of cytokine expression(Fig. 5c), revealing heterogeneity across intratu-
mor regions. In pretreatment P73, pathways such as JAK-STAT signaling, which
promotes the aberrant synthesis of PD-L1 and facilitates immune resistance, were
significantly enriched, linking this pathway to poor responses to PD-1 blockade. Addi-
tionally, TGF−β, a negative prognostic signal and predictor of immune checkpoint
inhibitor resistance, was upregulated in P73 [39, 40]. WNT signaling pathways, also
enriched in P73, were implicated in macrophage recruitment [41]. CORAL further
facilitated the investigation of cytokine expression, which is typically not fully mea-
surable with CODEX (Fig. 5d). Notably, pretreatment P73 (non-responder) exhibited
enrichment of CD274 (PD-L1), PDCD1 (PD-1), and chemokines such as CXCL13
and CXCL12, suggesting a tumor-driven mechanism for macrophage migration and
immune evasion[42]. The intratumor regions for post-treatment non-responder, showed
enrichment of CCR7, CCR1, CXCL9 and CCL15. In contrast, the post-treatment
of responder (”Tumor 6”) and a shared region ”Tumor 5” showed enrichment of
CXCL8 and preteatment was associated with CXCL3. Notably, CXCL8 is a promising
potential prognostic marker for hepatocellular carcinoma [43].

To investigate how immune cells near intratumoral regions shape the tumor
microenvironment in non-responder and responder samples, we examined the inter-
actions between key cell types provided by CORAL Fig. 5e). Interestingly, cell-cell
interaction predictions by CORAL indicated high interaction between CD8+ T cells
and tumor cells in responder (P84), which is indicative of an effective immune response.
This kind of interaction is commonly associated with successful immunotherapy,
where CD8+ T cells kill tumor cells[44]. In contrast, P73 (non-responder) had more
interactions between CD4+ T cells and other immune cells. CD4+ T cells can be
regulatory (Tregs) or inflammatory (Th1, Th2), but when they are more involved in
interactions in tumors, it often means there is immune suppression[45]. Additionally,
macrophages in P73 also interacted more with CD4+ T cells, which further points to
an immunosuppressive environment that supports tumor survival[46, 47]. In summary,
the non-responder (P73) shows a more immunosuppressive tumor microenvironment,
with CD4+ T cells and macrophages that suppress anti-tumor immune responses,
while the responder (P84) has stronger CD8+ T cell-mediated immune activity.

The improved resolution of Visium by CORAL allowed for the investigation of
specific ligand-receptor interactions that underpin immune cell communication within
the tumor microenvironment using CellPhoneDB[48] Fig. 5f, Supplementary Fig. 8).
Interestingly, in the non-responder (P73), WNT1/SFRP2 and CXCL13/CXCR5 inter-
actions were significantly enriched between CD4+ T cells and macrophages. Among
the interactions between tumor cells and CD8+ T cells, we found CD274/PDCD1 (PD-
L1/PD-1) interactions to be significantly enriched in both pre- and post-treatment
stages in P73. This suggests the PD1 signaling persists even after blockade that hinder
CD8+ T cell-mediated cytotoxicity, a hallmark of resistance to immunotherapy[49]. In
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contrast, P84 (responder) exhibited lower PD-L1/PD-1 interactions post-treatment,
highlighting a reduction in immune evasion and a more favorable immune environment
post-therapy. Strong WNT1/SFRP1 and WNT1/SFRP4 interactions were observed
in P73, potentially involved in WNT signaling, which has been implicated in recruit-
ing immunosuppressive macrophages and contributing to CD8+ T cell exclusion[50].
This is consistent with findings that WNT signaling can enhance the macrophage
polarization toward an M2 phenotype, which is immunosuppressive and promotes
tumor progression[51]. Additionally, CXCL8/CXCR2 and CXCL8/ACKR1 interac-
tions enriched in P73 as pro-inflammatory chemokine and tumor progression pathways
[52]. CORAL’s inferred latent variable (v) captured spatial heterogeneity and func-
tional activity within individual samples (Fig. 5g-h,Supplementary Fig. 9). In P73,
CD8+ T cells exhibited exhaustion, characterized by sustained inhibitory signals
post-treatment, suggesting a dysfunctional phenotype. Additionally, an enriched anti-
inflammatory signature in CD4+ T cells at low-v regions in P73 pointed to immune
dysregulation, further contributing to ineffective responses to therapy.

Overall, CORAL enabled the exploration of key immune escape mechanisms that
drive tumor resistance. By integrating and resolving data from different spatial scales,
CORAL can offer novel insights into tumor heterogeneity, and this capability holds
tremendous potential for improving our understanding of treatment resistance in
cancer, providing critical pathways for future personalized immunotherapies.

Discussion

CORAL is a deep generative model designed to integrate spatial multioics data using
graph aggregation attention mechanisms, enabling comprehensive spatial analysis. The
model addresses four key tasks in spatial omics: identifying spatial domains, resolv-
ing single-cell components from low-resolution data, predicting cell-cell interactions,
and uncovering major molecular regulatory pathways. We demonstrated CORAL’s
versatility by benchmarking it against existing methods with overlapping functions.
However, no other model achieves all these tasks within a single framework. CORAL’s
broad applicability was validated across diverse datasets, including simulated data,
datasets directly captured from experimental methods, and synthetic data generated
using advanced statistical tools such as scDesign3. Furthermore, we applied CORAL
across multiple platforms, including MERFISH, CITE-seq, Stereo-CITE-seq, CODEX,
and Visium, showcasing its compatibility and robustness.

The CORAL model showed state-of-the-art advancements in generative modeling
by leveraging graph networks and attention layers to conceptualize cells as nodes and
their interactions as edges within a graph structure. The model employs contrastive
loss and graph Laplacian loss to optimize latent representations, enabling interpretable
insights into cellular and molecular relationships in spatial datasets. We believe that
these features make CORAL uniquely equipped to address the complexities of spatial
omics integration and analysis.

By applying CORAL, we uncovered novel biological insights across multiple
datasets. For example, in spatial domain detection, CORAL successfully identified
the laminar structure of the mouse cortex, fine-grained structures in the thymus, and
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heterogeneous tumor microenvironments in hepatocellular carcinoma (HCC). Using
CORAL, we uncovered immune-evasive features in non-responders (e.g., P73), includ-
ing CD8+ T cell exclusion, macrophage recruitment, and enrichment of pathways
like JAK-STAT and TGF-β. In responders (e.g., P84), reduced immune suppression
post-treatment highlighted a more favorable microenvironment. These results demon-
strate CORAL’s power to reveal mechanisms underlying therapy outcomes in HCC. In
single-cell transcriptomics, CORAL outperformed existing tools, such as SpatialScope,
particularly in resolving fine-grained cell types. This capability is especially valuable
for spatial proteomics datasets, which often profile a limited number of proteins and
lack sufficient resolution for detailed gene ontology analysis. Through high-resolution
imputation, CORAL captured novel cell subtypes and enabled downstream analy-
ses equivalent to genome-wide single-cell studies. Additionally, the model elucidated
cell-cell interactions, revealing intercellular communication and regulatory networks
at unprecedented resolution. In the integration of Visium and CODEX datasets,
CORAL harmonized disparate modalities to uncover key biological patterns, further
emphasizing its utility for cross-platform analysis.

Despite its strengths, CORAL has certain limitations. The model requires aligned
spatial omics data for optimal performance, though perfect alignment or uniform slide
dimensions are not strictly necessary. While slight misalignments are permissible, more
accurate alignment enhances the reliability and resolution of the results. Address-
ing these limitations through preprocessing improvements or alignment-free modeling
approaches may further expand CORAL’s utility.

Overall, CORAL represents a versatile and powerful tool for spatial omics analysis.
Its ability to integrate and resolve data across spatial scales provides unique insights
into tissue organization, cellular communication, and molecular regulation. By uncov-
ering novel biological mechanisms and addressing limitations in existing methods,
CORAL advances spatial biology and holds tremendous potential for guiding future
discoveries and applications in personalized medicine.

Methods

The model design

The CORAL model is a deep generative framework designed to integrate multimodal
spatial data with varying resolutions. Instead of being limited to specific modalities,
CORAL harmonizes data from diverse sources, such as low-resolution spot-level data
and high-resolution single-cell data, while preserving spatial structure and modality-
specific characteristics. Coral accepts inputs from multiple modalities, denoted as yip
for single-cell data and Xjg for spot-level data, where i ∈ [1, ..., N ] indexes cells,
p ∈ [1, ..., P ] index single-cell features, j ∈ [1, ..,M ] indexes spots, and g ∈ [1, ..., G]
indexes spot-level features. Each modality is modeled with a tailored generative process
to capture its specific statistical properties.
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Generative model

CORAL assumes that cells located at spatial coordinates ri in aligned and adjacent
tissue samples share a common underlying latent feature representation, zi ∈ Rd,
which encodes shared biological and spatial information. This latent representation
serves as a shared representation across modalities and acts as the foundation for
generating both single-cell and spot-level data. The observed data are generated
using modality-specific probabilistic distributions, parameterized by neural networks.
These distributions are trained to reconstruct observed data while aligning shared
latent features in a biologically meaningful way. Specifically: p(yip|zi; θy) represents
the single-cell modality, modeled with a Gamma distribution to capture positive con-
tinuous data; p(xig|zi; θx) represents the inferred single-cell-level data from spot-level
observations, modeled with a Negative Binomial distribution to capture overdispersed
count data. The observed single-cell and spot-level data are generated using these
modality-specific probabilistic distributions:
1. Spot-level modality (Xjg): Spot-level data is modeled with a Negative Binomial
distribution to accommodate overdispersed count data:

p(Xjg; δg) ∼ NB(lxj
∑

i∈U(j)

hx(zi), δg) (1)

where lxj is the library size for spot j, hx is a neural network parameterizing the rate,
U(j) denotes the set of cells within the spatial neighborhood of spot j, and δg is
the dispersion parameter. Visium spots are larger than single cells, typically covering
1 ∼ 30 cells. Thus, we assume the cells within a circular region |ri−rj| < ω are aligned
with the spot j, and their combined expression generates the observed spot-level data.
2. Single-cell modality (yip): Single-cell data follows a Gamma distribution to model
positive continuous data:

p(yip|zi; θy) ∼ Gamma(lyi · hy(zi), σp) (2)

Here, hy is a neural network parameterizing the shape, lyi is the library size for cell i,
and δp is the scale parameter.
3. Inferred single-cell representation (xig): In addition to the observed modal-
ities, CORAL infers single-cell-level representations xig from spot-level data. These
representations are also modeled with a Negative Binomial distribution:

p(xig; θx) ∼ NB(lxi · hy(zi), δg) (3)

Here, xig represents the inferred single-cell RNA-seq expression for cell i, reconstructed
from spot-level Visium data.
The generative process incorporates a latent variable zi, shared across modalities, and
an auxiliary latent variable vi ∈ R1, which disentangles cell state information. The
prior distribution of zi is modeled as:

p(zi|vi; ci) ∼ N (ci · hµ(vi), ci · hσ(vi)
2) (4)
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where ci represents the cell type, hµ and hσ are neural networks parameterizing the
mean and variance, respectively. The hierarchical latent variable vi captures additional
cell-state-specific variations and is assumed to follow a standard normal prior:

vi ∼ p(vi; ci) = N (0, I) (5)

To account for spatial interactions, CORAL constructs a local graph Gi = (Vi, Ei) for
each cell i. The graph consists of vertices Vi, which represent k neighboring cells of
cell i, and Ei are edges encoding interactions between them. The adjacency matrix
A ∈0,1k×k is defined such that Aii′ = 1 if cell i and cell i′ are neighbors, and 0
otherwise. The spatial interactions between cells are captured by the probability of an
edge between two nodes:

p(Aii′ = 1|zi, zi′) = σ(f(zi, zi′ ; Θ)) (6)

Where σ is the sigmoid function and f is a neural network parameterized by Θ.
The full generative model is expressed as p(X,y,A, x, v, z|c), with equals to,∏

i

p(zi|vi; ci)p(vi; ci)p(xi|zi)p(yi|zi)
∏
j

δ(Xj −
∑

i∈U(j)

xi)
∏
i,i′

p(Aii′ |zi, zi′) (7)

Each component is defined as:

vi ∼ p(vi; ci) = N (0, I) (8)

zi ∼ p(zi|vi; ci) = N (zi; ci · hµ(vi), ci · hσ(vi)
2) (9)

xi ∼ p(xig|zi; θx) = NB(li · hx(zi), σg) (10)

yi ∼ p(yip|zi; θy) = Gamma(li · hy(zi), σp) (11)

Xj ∼ p(Xjg; δg) = NB(lj
∑

i∈U(j)

hx(zi), δg) (12)

p(Aii′ = 1|zi, zi′) = σ(f(zi, zi′ ; Θ)) (13)

Inference model

CORAL employs a joint variational inference model to approximate the posterior
distributions. The joint posterior is expressed as:

q(z, v, x|y,X,A, c) =
∏
i

q(xi|Xj , ci)q(zi|yi, xi,Ai)q(vi|yi,xi,Ai, zi) (14)

The major items include:
1. Single-cell inference q(xi|Xj , ci): Infers the single-cell expression profile xi con-
ditioned on the spot-level modality data Xj and the cell type ci.
2. Latent spatial feature inference q(zi|yi, xi,Ai): Approximates the posterior
distribution of the latent feature vector zi for cell i, considering the cell’s observed
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single-cell modality data yi, its inferred RNA-seq expression xi, and the local graph
Gi representing spatial and potentially functional relationships with neighboring cells.
This implies that the latent features zi are influenced by both the molecular data and
the cell’s spatial context within its microenvironment.
3. Latent spatial feature inference q(vi|yi,xi,Gi, zi): Captures the major comp-
nents of spatial specific states, integrating single-cell modality data yi, its inferred
expression xi, the local spatial graph Gi, and the latent features zi. Each posterior
distribution is parameterized using neural networks, ensuring flexible and efficient
inference.
4. Graph attention networks for modeling cell-cell interations: To model
the cell-cell interactions, CORAL incorporates Graph Attention Networks (GATs).
GATs use an attention mechanism to dynamically weigh neighbor contributions. The
attention coefficient is defined as:

αii′ = softmax(LeakyReLU(aT [Whi||Whi′ ])), (15)

where is a learnable weight vector, W is a weight matrix applied to the node features
h, and || denotes concatenation. The attention coefficients influence how neighbor-
ing cells’ features are aggregated, enabling CORAL to capture spatially dependent
interactions.

Learning and optimization

CORAL optimizes its parameters by maximizing the evidence lower bound (ELBO)
,which integrates reconstruction accuracy and prior regularization, while capturing
the hierarchical relationships between spot-level data (X) and singl-cell-level data (x).
The ELBO is defined as:

ELBO(q) = Eq(z,v,x|y,X,A,c)[logp(X, y,A, x, v, z|c)− log[q(z, v, x|X, y,A, c)] (16)

This formulation reflects the trade-off between accurately modeling the observed data
and ensuring the learned latent variables align with the prior distributions. The joint
probability p(X, y,A, x, v, z|c) represents the generative process of the model, and the
posterior q(z, v, x|X, y,A, c) is approximated using neural networks. The loss function
incorporates reconstruction terms, regularization, and spatial constraints to ensure
accurate modeling of multimodal data, alignment of latent variables with biological
context, and preservation of spatial relationships.

1. Reconstruction Terms:

Lrecon,X = −
∑
j,g

NB

Xjg; lj ·
∑

i∈U(j)

hx(zi), δg

 , (17)

Lrecon,y = −
∑
i,p

Γ (yip; li · hy(zi), σp) , (18)

Lrecon,x = −
∑
i,g

NB (xig; li · hx(zi), δg) . (19)
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These reconstruction terms ensure that the observed data (X, y) and inferred single-
cell data (x) are faithfully reproduced by the generative model.

2. KL Divergence:

LKL,z =
∑
i

KL [q(zi|yi, xi,Ai)||p(zi|xi, ci)] , (20)

LKL,x =
∑
i

KL [q(xi|X,A, ci)||p(xi|zi)] . (21)

The KL divergence terms regularize the latent variables, aligning the approximate
posterior distributions with their respective priors.

3. Graph Laplacian Regularization:

LLaplacian =
1

2
Tr(Z⊤LZ), (22)

where Z represents latent embeddings, and L is the graph Laplacian matrix. This term
enforces smoothness among latent variables for spatially adjacent cells, encouraging
biologically meaningful relationships between neighboring cells.

4. Contrastive Loss:

Lcontrastive =
1

Npos

∑
(i,i′)∈positive pairs

di,i′ +
1

Nneg

∑
(i,i′)∈negative pairs

max(0,margin− di,i′),

(23)

where di,i′ is the distance between latent representations. The contrastive loss enhances
the separation between biologically distinct cell types (negative pairs) while preserving
similarity among the same types (positive pairs). This ensures that the latent embed-
dings are biologically interpretable.
The total loss is a weighted combination of all components, where the hyperparame-
ters λX , λy, λx, λz, λLap, and λcontrast balance their contributions. This comprehensive
loss function ensures robust integration of multimodal data, accurate reconstruction,
and biologically meaningful latent representations.

Ltotal = λXLrecon,X + λyLrecon,y + λxLrecon,x

+ λzLKL,z + λxLKL,v

+ λLapLLaplacian + λcontrastLcontrastive. (24)

CORAL is trained with the Adam optimizer using gradient clipping to stabilize
updates. A dynamic learning rate scheduler adjusts the learning rate, ensuring con-
vergence. The model iteratively updates parameters by reconstructing multimodal
data, aligning latent variables, and enforcing spatial constraints. By combining these
components, CORAL produces robust, biologically meaningful representations.

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.01.636038doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.01.636038
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cluster Separation Ratio

The cluster separation ratio quantifies the quality of clustering in the principal compo-
nent (PC) space by comparing the compactness of points within clusters (intra-cluster
distances) to the separation between clusters (inter-cluster distances). It is defined as:

Cluster Separation Ratio =
Average Intra-Cluster Distance in PC space

Average Inter-Cluster Distance in PC space

Where: Intra-Cluster Distance is the average pairwise distance between all points
within the same cluster:

dintra =
1

k

k∑
i=1

1

|Ci|2
∑
x∈Ci

∑
y∈Ci

d(x, y)

Here, k is the number of clusters, Ci represents the set of points in cluster i, and
d(x, y) is the distance between points x and y.

Inter-Cluster Distance is the average pairwise distance between the centroids of
different clusters:

dinter =
1

k(k − 1)

k∑
i=1

∑
j ̸=i

d(µi, µj)

Here, µi and µj are the centroids of clusters i and j, respectively.
A lower cluster separation ratio indicates better-defined clusters, as it suggests that

points within clusters are tightly packed (low dintra) and well-separated from points
in other clusters (high dinter).

Supplementary information. Figures S1-S9
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Supplementary Fig. 1: CORAL applied on synthetic data. The data simulated
processes was described in the SpatialGlue[22]. a, Location of downsampled and orig-
inal spots. b, Left: leiden clustering of modality 1, modality 2 and downsampled
modality 1. Right: leiden clustering on latent variables identified by SpatialGlue,
TotalVI, CORAL, concatenating PCA of two modality, compared with ground truth.
c, UMAP OF latent variables identified by SpatialGlue, TotalVI, and CORAL. d, Per-
formance metrics (Homogeneity, Mutual Information, V-measure, Adjusted Mutual
Information (AMI), Normalized Mutual Information (NMI), Adjusted Rand Index
(ARI)) comparing CORAL’s spatial domain detection accuracy with modality 1,
modality2, Spatial Glue, totalVI, and concatenated PCA values of two modalities.
The one-way Anova test was performed on each metric, p value < 1e-4 for all tests. e,
Upper: distribution of mean expression between all genes generated by CORAL and
ground truth. Lower: distribution of individual expression between all genes generated
by CORAL and ground truth. f, Scatter plot of reconstructed and ground truth of
expression of individual genes in downsampled modality 1 and modality 2, with cosine
similarity 0.96, and 0.64 separately, and pearson correlation 0.83 and 0.54. g, Scatter
plot of predicted mean expression of individual genes for high-resolution modality 1
and ground truth modality 1. Pearson correlation is 0.82, and cosine similarity is 0.99.
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Supplementary Fig. 2:CORAL applied to simulated MERFISH data. a, Ground
truth spatial niches with different grid resolutions (20×60, 15×45, 10×30, and 5×15)
simulating varying cell densities. Each point represents a cell, color-coded by its
true niche. b, Truncated MERFISH and SpatialGlue inferred niches, illustrating the
impact of downsampling and alignment quality on niche identification. c, Spatial niches
inferred by CORAL at varying grid resolutions (20×60, 15×45, 10×30, 5×15). CORAL
demonstrates robustness to spatial resolution changes while maintaining biological
consistency in niche assignments. d, Confusion matrices for the predicted spatial niches
compared to ground truth after manual alignment. Top row: Downsampled MERFISH
data at different resolutions. Bottom row: Comparison of CORAL with COVET, Spa-
tialGlue, and Truncated MERFISH methods. CORAL achieves high accuracy in niche
alignment, as indicated by the diagonal dominance in confusion matrices.
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Supplementary Fig. 3: Graphical and latent representation analysis in
CORAL. a, UMAP visualizations of truncated MERFISH data, latent representation
z, and latent representation v. The latent space aligns well with biological cell types
(color-coded). b, Heatmaps of θ (left) and |∇v| (right), highlighting latent spatial pat-
terns and gradients of the hierarchical latent variable v. c, Graph-based visualization
of spatial relationships captured by CORAL. Top row: examples of graphs centered on
individual cells, showing local neighborhoods. Bottom row: examples of spatial graphs
in the entire dataset. CORAL effectively encodes spatial connectivity, preserving local
and global tissue structures. d, Network map of cell-cell interactions across the mouse
motor cortex, with color intensity representing interaction strength. e, Circular plot of
cell-type interactions, where bar lengths represent total mean interactions and band
widths represent interaction strength.
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Supplementary Fig. 4: CORAL applied to sythetic brain spatial transcrip-
tomics data. a, Annotated brain regions, with each color representing a distinct
anatomical region. b, Assignment of single-cell locations to brain regions based on
CORAL’s spatial alignment, using both high-resolution and low-resolution modalities.
c, Clustering of single cells based on RNA modality (modality 1), revealing spatially
coherent biological clusters across the brain regions. d, Visualization of single-cell and
spot-level data spatial locations, showing the integration of multiple resolutions. e,
Scatter plot comparing reconstructed high-resolution modality 1 (M1) with ground
truth expression values. CORAL achieves a Pearson correlation of 0.78 and a cosine
similarity of 0.79, indicating high fidelity in reconstructing single-cell expression data.
f, Heatmaps showing the expression of marker genes (CD8A, CD14, CD4, CD19)
across the integrated dataset, highlighting CORAL’s ability to preserve spatial and
molecular patterns at single-cell resolution.
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Supplementary Fig. 5: CORAL preserves spatial and molecular patterns in
immune datasets. a, UMAP visualizations of marker gene expressions (CD8A, CD3,
CD4, CD19) in the integrated dataset. CORAL successfully captures distinct immune
cell subtypes in the latent space. b, Heatmaps of additional marker genes (CD40, CD4,
Psmb11, CD3) in the UMAP representation, highlighting CORAL’s ability to pre-
serve gene-specific patterns. c, Scatter plot comparing reconstructed high-resolution
modality 1 (M1) with ground truth expression values. CORAL achieves a Pearson
correlation of 0.93 and cosine similarity of 0.93, demonstrating high accuracy in single-
cell expression reconstruction. d, Visualization of the spatial locations of cells in the
dataset, showing the reconstructed tissue structure. e, Heatmap of the v-value latent
variable over the spatial domain, highlighting spatial gradients captured by CORAL.
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Supplementary Fig. 6: Spatial integration of CODEX and Visium data using
CORAL. a, Spatial distribution of Visium and CODEX datasets for four samples
(73 3 pre, 73 5 post, 84 2 pre, and 84 3 post). Visium and CODEX spots are overlaid
to demonstrate the integration of multi-modal spatial data. b, Cell type annota-
tion across the integrated dataset, with color-coded cell types including tumor cells,
immune cells (CD8 T cells, CD4 T cells, B cells, neutrophils, macrophages), stromal
cells (fibroblasts, endothelial cells), and dendritic cells. CORAL successfully aligns
spatial and cell type data, capturing the complex tumor microenvironment.
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Supplementary Fig. 7: Cell type composition and latent space visualization
in CORAL niches. a, Heatmap showing the overlap percentage between cell types
in the CODEX dataset and CORAL-inferred spatial domains. The strong diagonal
highlights accurate cell type assignments within CORAL niches. b, Bar plot showing
the percentage composition of major cell types (e.g., immune, stromal, tumor) across
CORAL-inferred domains. The results demonstrate that CORAL effectively segregates
niches based on their dominant cell type composition. c, UMAP visualization of protein
expression levels in the integrated dataset, with distinct clusters corresponding to cell
types. d, UMAP visualization of imputed single-cell RNA expression from CORAL,
showing spatial and molecular alignment with cell types identified in the CODEX
dataset. CORAL preserves the spatial heterogeneity of the tumor microenvironment
while capturing fine-grained molecular patterns.
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Supplementary Fig. 8: Cell-cell interaction analysis pre- and post-treatment
using CORAL. Heatmaps showing the sum of significant interactions between cell
types across different treatment conditions for samples P73 and P84. Each cell type
is represented along the rows and columns, and the intensity of the heatmap indi-
cates the interaction strength. a, Sample P73 pre-treatment, highlighting strong
interactions between tumor cells, macrophages, and CD4 T cells. b, Sample P73
post-treatment, showing changes in interaction patterns, including increased interac-
tions involving tumor-infiltrating immune cells. c, Sample P84 pre-treatment, with
significant interactions dominated by tumor cells, stromal cells, and CD8 T cells.
d, Sample P84 post-treatment, indicating shifts in cell-cell interactions, particularly
involving macrophages and stromal cell populations. CORAL effectively captures
dynamic changes in the tumor microenvironment associated with treatment response.
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Supplementary Fig. 9: Spatial patterns and cell type composition pre- and
post-treatment. a, Heatmaps of the spatial v-value latent variable for samples P73
and P84 under pre-treatment and post-treatment conditions. The v-values reveal spa-
tial gradients and shifts in tissue microenvironments, capturing treatment-induced
changes in tumor and immune interactions. b, Stacked bar plots showing the percent-
age composition of major cell types across spatial niches for each condition. Each bar
represents a spatial niche, and colors correspond to cell types, including tumor cells,
immune cells (e.g., CD4 T cells, CD8 T cells, B cells), and stromal cells. The plots
highlight changes in cell type proportions associated with treatment responses, such
as shifts in immune cell infiltration and tumor composition.
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