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Abstract 

Detecting and mitigating off-target activity is critical to the practical application of 
CRISPR-mediated genome and epigenome editing. While numerous methods have 
been developed to map Cas9 binding specificity genome-wide, they are generally 
time-consuming and/or expensive, and not applicable to catalytically dead CRISPR 
enzymes. We have developed CasKAS, a rapid, inexpensive, and facile assay for iden-
tifying off-target CRISPR enzyme binding and cleavage by chemically mapping the 
unwound single-stranded DNA structures formed upon binding of a sgRNA-loaded 
Cas9 protein. We demonstrate this method in both in vitro and in vivo contexts.

Introduction
CRISPR-based methods for editing the genome and epigenome have emerged as a 
highly versatile means of manipulating the genetic makeup and regulatory states of cells. 
CRISPR technologies hold the potential to transform medical practice by enabling direct 
elimination of pathogenic sequence variants or manipulation of aberrant gene expres-
sion programs. CRISPR has also become a standard tool for discovery in biomedical 
research, including its uses for high-throughput, massively parallel genomic screens [1].

The presence of significant off-target effects is of universal concern for genome engi-
neering technologies, presenting a major hurdle to fully realizing their potential utility. 
CRISPR tools have been shown to exhibit biochemical activity away from their intended 
target sites, which is particularly problematic for therapeutic applications, where risks 
of activity at sites other than the intended target leading to negative consequences to 
patient health must be minimal. Understanding and mapping these effects is therefore 
an urgent need.
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To this end, numerous experimental approaches have been developed to experimen-
tally map off-target effects genome-wide. Methods such as Digenome-seq [2] look for 
particular types of cut sites around target sequences in whole-genome sequencing data; 
however, deep whole-genome sequencing remains expensive. Assays such as BLESS [3], 
GUIDE-seq [4], HTGTS [5], DSBCapture [6], BLISS [7], SITE-seq [8], CIRCLE–seq [9], 
TTISS [10], INDUCE-seq [11], and CHANGE-seq [12] aim instead to directly map Cas9 
cleavage events. However, all these methods involve some combination of complex and 
laborious molecular biology protocols and non-standard reagents and have not been 
widely adopted. Other methods, such as DISCOVER-seq [13], which maps DNA repair 
activity by applying ChIP-seq against the MRE11 protein, as well as earlier applications 
of ChIP-seq to map catalytically dead dCas9 occupancy sites genome-wide [14, 15], suf-
fer from technical issues associated with the ChIP procedure. Most recently, long-read 
sequencing has been adapted to the problem of Cas9 specificity profiling, in the form of 
SMRT-OTS and Nano-OTS [16], but the cost of these methods is relatively high while 
their throughput is comparatively low.

These existing methods have differing advantages and weaknesses — some (e.g., ChIP-
seq) are capable of capturing dCas9 association with DNA as a snapshot in time, others 
(e.g., those mapping editing outcomes by sequencing) provide information for off-target 
activity that can occur over a broad period of time, and generally with higher specificity.

Various computational models have also been trained to predict off-targets genome-
wide [17, 18]. However, these exhibit far from perfect accuracy, and thus in many situ-
ations, especially within clinical contexts, direct experimental evidence is needed to 
accurately identify potential unintended effects of CRISPR-based reagents.

A faster, more accessible, and versatile method for mapping CRISPR off-targets is 
thus still a major need in the field. Here, we introduce CasKAS, a fast, inexpensive, and 
straightforward method for mapping CRPSIR off-targets that is applicable to both active 
and catalytically dead CRISPR enzymes. CasKAS takes advantage of the unwound sin-
gle-strand DNA associated with CRISPR occupancy of DNA, which can be very spe-
cifically mapped using kethoxal as recently demonstrated by the KAS-seq assay. We 
demonstrate the application of CasKAS for profiling off-targets of active Cas9 and 
dCas9, in vitro using purified genomic DNA, and in vivo in live cells, and we also show 
that CasKAS can be used to distinguish off-target sites where active Cas9 cleaves DNA 
from sites where it is only binding. CasKAS is thus a highly versatile and adaptable tool 
for profiling CRISPR off-target sites, as well as for studying the dynamics of CRISPR 
association with the genome and of the editing process.

Results
CasKAS for mapping the physical association of CRISPR enzymes with DNA

When a Cas9-sgRNA ribonucleoprotein (RNP) is engaged with its target site, the sgRNA 
invades the DNA double helix, forming a ssDNA structure on the other strand (Fig. 1a). 
We thus reasoned that mapping ssDNA-containing regions should be a sensitive bio-
chemical signal of productive Cas9 binding. The recently developed KAS-seq [19] assay 
for mapping single-stranded DNA (ssDNA) (kethoxal-assisted ssDNA sequencing [19]) 
is ideally suited for the purpose of identifying ssDNA generated by CRISPR protein bind-
ing to DNA (Fig. 1a, b). KAS-seq is based on the specific covalent labeling of unpaired 
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Fig. 1  CasKAS maps dCas9- and Cas9-mediated strand invasion and cleavage events genome-wide in vitro 
on purified DNA and in vivo in cell lines. a CasKAS is based on the KAS-seq assay for mapping ssDNA 
structures. N3-kethoxal covalently modifies unpaired guanine bases (while having no activity for G bases 
paired within dsDNA). Strand invasion by Cas9/dCas9 carrying an sgRNA results in the formation of a ssDNA 
structure, which can be directly identified using N3-kethoxal. b Outline of in vivo and in vitro CasKAS. For 
in in vitro CasKAS, gDNA is incubated with a dCas9/Cas9 RNP, then N3-kethoxal is added to the reaction; 
for in vivo CasKAS, cells are transfected with an RNP, then treated with kethoxal. DNA is then purified, click 
chemistry is carried out, DNA is sheared, labeled fragments are pulled down with streptavidin beads, and 
sequenced. c, d Mapping of dCas9 targets in vitro. c Mouse gDNA was incubated with dCas9 RNPs carrying 
one of two sgRNAs targeting the mouse HOXA locus. Highly specific labeling is observed at the expected 
target location of each sgRNA. d Asymmetric strand distribution of in vitro dCas9 CasKAS reads around 
the sgRNA target site. e, f Mapping of Cas9 targets in vitro. e Mouse gDNA was incubated with Cas9 RNPs 
carrying one of the same two sgRNAs targeting the mouse HOXA locus. f The distribution of 5′ read ends 
around targets sites in in vitro CasKAS datasets shows direct capture of the intermediate cleavage state. 
g Reproducibility of in vivo dCas9 CasKAS datasets. Shown are RPM values for 500 bp windows centered 
on the top ∼7000 predicted target sites for the “sgRNA #1” in two in vitro CasKAS experiments. Off-target 
sites are color-coded by the number of mismatches relative to the sgRNA. h CasKAS requires a moderate 
sequencing depth of 10–20 × 106 reads to accurately rank potential off-targets. A total of 10 different sets of 
subsamplings were generated, and the fraction of off-targets within 20% of their final quantification value 
was calculated for each. The mean ± SD is shown. i–k In vitro CasKAS maps Cas9 and dCas9 target sites. i 
Shown are CasKAS experiments with Cas9 and dCas9 and with the EMX1 sgRNA or with no sgRNA (negative 
control). j Assymmetric 5’ end distribution around target sites in dCas9 in vivo CasKAS. k In  vivo Cas9 CasKAS, 
a mixture distribution is observed between phased cleavage sites and broader ssDNA labeling
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guanine bases with N3-kethoxal, generating an adduct to which biotin can then be added 
using click chemistry. After shearing, biotinylated DNA, corresponding to regions con-
taining ssDNA structure, can be specifically enriched for and sequenced.

To determine the feasibility of using KAS-seq to map regions of ssDNA generated by 
Cas9 binding, we carried out an initial in vitro experiment using mouse genomic DNA 
(gDNA), purified dCas9 and two sgRNAs targeting the Hoxa locus.

Strikingly, we observed strong peaks at the expected target sites for each sgRNA 
(Fig. 1c). Detailed examination of dCas9 CasKAS profiles around the predicted sgRNA 
target sites revealed strand coverage asymmetry patterns similar to those observed for 
ChIP-seq around transcription factor binding sites [20] (Fig. 1d), indicating that enrich-
ment derives from the sgRNA target site itself and confirming the utility of N3-kethoxal 
for mapping dCas9 occupancy sites (in ChIP-seq, forward-strand reads are clustered to 
the left of the occupancy sites and reverse-strand reads to the right; this pattern arises 
because the occupancy site is crosslinked to the target protein and is thus always pulled 
down during immunoprecipitation resulting in all enriched fragments containing this 
site somewhere in their middle; observing a strong such pattern thus suggests high spec-
ificity of enrichment). We termed the assay “CasKAS.”

CasKAS for mapping active Cas9 nuclease cleavage sites

We then reasoned that CasKAS should also capture active Cas9 complexed with DNA, 
as the enzyme is thought to remain associated with DNA for some time after cleavage 
[21]. We performed CasKAS experiments with the same sgRNAs and active Cas9 nucle-
ase, and again observed enrichment at the expected on-target sites (Fig. 1e). Examina-
tion of Cas9 CasKAS read profiles around the on-target site showed that the 5′ ends of 
reads are precisely positioned around the expected cut site, with one cut position on 
the target strand (which binds the sgRNA and is cleaved by the HNH domain) and two 
to three such positions on the non-target strand (which is cleaved by the RuvC domain; 
Fig. 1f ), consistent with the previously known patterns of Cas9 cleavage [22, 23]. Cas-
KAS therefore provides target specificity profiles for both active and catalytically dead 
Cas9 enzymes.

CasKAS for mapping the activity of CRISPR enzymes in vivo

In vitro CasKAS data was highly reproducible between replicates (Fig. 1g), and a mod-
est sequencing depth of between 10 and 20 million mapped reads was sufficient to cap-
ture off-target specificity profiles (Fig. 1h), which is an order of magnitude lower than 
required for resequencing the whole genome.

We observed similar results with two mouse sgRNAs targeting the Nanog locus (Addi-
tional file 1: Supplementary Fig. 1) and with two human sgRNA (“EMX1” and “VEGFA”; 
Additional file 1: Supplementary Fig. 2 and 3). We found no enrichment using compo-
nents of the RNP in isolation — sgRNAs, dCas9 or Cas9 (Additional file 1: Supplemen-
tary Fig. 2).

Next, we tested the application of CasKAS in vivo in cell culture. Living cells contain 
substantial ssDNA due to active transcription, DNA replication, and other processes 
[19], so in  vivo CasKAS signal derives from a mixture of Cas9associated ssDNA and 
endogenous processes. We carried out KAS-seq experiments using both dCas9 and Cas9 
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in HEK293 cells transfected with RNPs targeting EMX1 or VEGFA, as well as negative, 
no-guide controls, which provided a map of background endogenous ssDNA profiles. 
At EMX1, which is not active in HEK293 cells, we observe strong peaks at the expected 
target site (Fig. 1i), as well as an asymmetric read profile around it for dCas9 (Fig. 1j), 
and a substantial degree of 5′ end clustering at the cut site, similar to what is observed 
in  vitro for active Cas9 (Fig.  1g). The VEGFA gene is active in HEK293 cells, but the 
dCas9/Cas9 CasKAS signal is still readily identifiable as an addition to the endogenous 
ssDNA enrichment pattern (Additional file 1: Supplementary Fig. 4). These results dem-
onstrate the utility of CasKAS for profiling CRISPR specificity both in vitro and in vivo.

We then examined the temporal dynamics of Cas9 and dCas9 association with the 
genome in vivo by carrying out in vivo time course for the EMX1 and VEGFA sgRNAs 
with both dCas9 and Cas9, assaying at 6, 12, 24, 48 and 72  h (Additional file  1: Sup-
plementary Fig. 5–8). We find that association with DNA is not yet detectable at 6 h, 
is strongest at 48 h, and disappears for Cas9 at 72 h but persists for dCas9 at that time 
point. This is likely explained by the fact that by the 72-h time point cells have divided 
and DNA edits have been completed, thus disrupting Cas9’s recognition of its cognate 
sequence. Thus, the 24-h and 48-h time points are optimal for in vivo CasKAS, with the 
caveat that this may be dependent on the growth dynamics of the cell lines/organisms 
being studied.

We further demonstrated the utility of CasKAS for profiling the association of Cas9 
and dCas9 with the genome, both in vivo and in vitro, by carrying out CasKAS for pairs 
of guides targeting promoter regions of multiple human genes (CD2, CD90/THY1, 
CD45/PTPRC, CD298/ATP1B3) as well as a pair of “safe” sgRNAs targeting non-coding 
sequence. We observe similar patterns to those described above for the mouse #1 and 
#2, Nanog-sg2 and Nanog-sg3, and the human EMX1 and VEGFA sgRNAs (Additional 
file 1: Supplementary Fig. 9–16).

Mapping CRISPR off‑target sites using CasKAS

We next examined the genome-wide specificity of sgRNAs as measured by CasKAS. 
We focus on the mouse sgRNA #1 as it displayed a substantial number of off-targets yet 
that number was also sufficiently small for all of them to be examined directly. We first 
called peaks de novo (see the “Methods” section for details) without relying on off-target 
prediction algorithms, then manually curated the resulting peak set, excluding peaks 
not exhibiting the canonical asymmetric read distribution around a fixed point on the 
two strands (Fig. 2a; see also Additional file 1: Supplementary Fig. 17 for illustration). 
Remarkably, while we found 32 peaks at predicted off-target sites, we also found 198 
(i.e., ∼6 × as many) additional manually curated peaks; while these peaks exhibit gener-
ally lower CasKAS signal (Fig. 2b), they all display proper peak shape characteristics (see 
Additional file  1: Supplementary Fig.  17 for details), suggesting that they are genuine 
sites of occupancy. Most of the predicted (in total ∼7500) off-target sites for this sgRNA 
did not show substantial occupancy by dCas9 CasKAS (Fig. 2c, d).

Sequence comparison of the occupied predicted off-target sites allowed us to evalu-
ate determinants of the specificity of dCas9 association and unwinding of DNA 
(Fig.  2e). Consistent with previous reports [24, 25], the PAM-distal region was much 
less sequence-constrained than the PAM-proximal seed region. We observed a similar 
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pattern with the other sgRNAs we profiled, in both mouse and human (Additional file 1: 
Supplementary Fig. 30–41).

When analyzing peaks not associated with predicted off-target sites (Additional file 1: 
Supplementary Fig.  42) we observed other telling patterns — at numerous sites with 
strong dCas9 CasKAS signal, we observe a large number of mismatches to the sgRNA 
sequence as well as “bulge” regions wherein indels (relative to the sgRNA sequence) are 
observed in the target sequence. These mismatches and bulges were in general much 
larger than what is considered permissible by off-target prediction algorithms; we specu-
late that the lack of consideration of potential target sequences with large numbers of 
mismatches or substantial insertions could explain the much larger number of such sites 
compared to the set of occupied predicted off-targets.

Fig. 2  CasKAS profiles sgRNA specificity genome-wide. a Summary of de novo peak calls for sgRNA #1 (using 
MACS2). b CasKAS signal is stronger over predicted off-target sites, but legitimate interactions are also found 
elsewhere in the genome. c CasKAS profile over predicted (by Cas-OFFinder) off-target sites for sgRNA #1 
with dCas9 (all such sites and focusing only on the top 100 ranked by dCas9 CasKAS signal). d CasKAS profile 
over peak calls outside predicted (by Cas-OFFinder) off-target sites for sgRNA #1 with dCas9. e Determinants 
of sequence specificity as measured by dCas9 CasKAS (for sgRNA #1). PAM-distal regions of the sgRNA are 
less constrained than its PAM-proximal parts. The on-target sgRNA is highlighted in yellow. f Active Cas9 
signal read profiles can be used to distinguish off-targets associated with cutting from those where only 
binding occurs. Shown are the same off-target sites as in e and the plus- and minus-strand active Cas9 5′ 
end profiles around the sgRNA. In this case (sgRNA #1), only the on-target site shows a Cas9 CasKAS pattern 
indicating cleavage; at the other sites even active Cas9 likely only binds but does not cut. A simple cutting 
score metric (“C-score”) based on multiplying the 5′ end forward- and reverse-strand profiles can be used to 
quantify cutting vs. binding. (g and h) Comparison between in vitro and in vivo CasKAS signal over predicted 
off-target sites for the EMX1 sgRNA. In vivo CasKAS is quantified as the difference in read per million 
(± 500 bp of the sgRNA site) between the sgRNA KAS-seq and the no-guide control KAS-seq (“RPMdiff”). The 
on-target site is shown in blue
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We next devised a simple metric for evaluating the degree of read clustering at cut 
sites (a “C-score”; see Methods for details) to estimate the degree of cutting by Cas9. The 
on-target site exhibits the second highest dCas9 CasKAS signal genome-wide. However, 
strikingly, even though all CasKAS-identified off-target sites showed Cas9 binding, only 
the on-target site displayed strong cutting activity (Fig. 2f ). The behavior of other sgR-
NAs varies (Additional file 1: Supplementary Fig. 18–29 and 43–51), with some showing 
multiple clearly identifiable cut sites. Overall, these results are consistent with previous 
reports that Cas9 requires more successful RNA:DNA base pairing for cleavage activity 
than is necessary for binding [26, 27]. Thus, interpreting the read distributions of Cas9 
CasKAS at target sites enables simultaneous detection of binding specificity and the 
promiscuity of catalytic activity.

We then carried out amplicon sequencing over a set of 81 potential EMX1 and 52 
potential VEGFA on- and off-targets on genomic DNA extracted from HEK293 cells 
transfected with each of the two sgRNAs. These experiments generally corroborated the 
in vitro CasKAS results and identified no additional sites at which cutting occurs but for 
which cutting was not observed in in vitro CasKAS data (Additional file 1: Supplemen-
tary Fig. 52 and 53).

Finally, we compared in  vitro and in  vivo CasKAS profiles using the difference 
between the signal in CasKAS and no-guide negative control libraires as a meas-
ure of in vivo occupancy (Fig. 2g, h). We find many fewer strongly enriched sites in 
in vivo datasets than in vitro, with the on-target site being either the top (for dCas9) 
or among the top (for Cas9) sites in vivo. A potential explanation for this difference is 
the previously reported impediment of Cas9/dCas9 binding to DNA by the presence 
of nucleosomes [28].

Discussion
In conclusion, we have presented CasKAS, a simple and robust method for mapping 
the specificity of active and catalytically dead versions of CRISPR enzymes. CasKAS 
has numerous advantages over existing tools while also opening up new possibilities 
for studying CRISPR biology. CasKAS requires no specialized molecular biology proto-
cols, takes just a few hours in vitro (and a similar amount of time after harvesting cells 
in vivo), and, due to the strong, active enrichment of target sequences, is inexpensive. 
In contrast to previously developed methods, It measures strand invasion by CRISPR, 
which is likely biochemically more specific and relevant to CRISPR function than DNA 
association (invasion is critical for cleavage by active Cas9, and it also ensures stable 
occupancy to drive epigenetic modulation and the various other effector functions of 
dCas9 fusions). We compared de novo called CasKAS peaks to those generated by other 
means, and while we found a variable degree of concordance and large sets of peaks 
unique to some methods, those found only by CasKAS often contained higher fractions 
of predicted off-target sites than those unique to other methods (Additional file 1: Sup-
plementary Fig. 54–58).

CasKAS does not rely on measuring DNA cleavage or modification and can thus be used 
to profile the specificity of all types of DNA-targeting CRISPR proteins that generate a 
stable ssDNA structure. CasKAS also does not rely on cellular repair processes, cell divi-
sion, or delivery of additional exogenous DNA (as in GUIDE-seq) to generate a detectable 



Page 8 of 15Marinov et al. Genome Biology           (2023) 24:85 

signal. These advantages, coupled with low cell input requirements, may increase the util-
ity of the method in rare primary cell types, tissues from animal models, or even for direct 
assessment of specificity in edited patient cells (e.g., ex vivo edited immune cells). A current 
limitation of CasKAS is the requirement that a G nucleotide is present within the sgRNA 
sequence, since kethoxal requires an exposed G to react with. However, only a small frac-
tion (≤ 5%) of sgRNAs in the human genome lack any Gs for S. pyogenes PAM sequences 
(Additional file  1: Supplementary Fig.  59). We also do not observe a strong correlation 
between the number of G bases in an off-target sgRNA match and CasKAS enrichment 
(Additional file  1: Supplementary Fig.  60). A minor limitation specific to in  vivo experi-
ments is that high levels of ssDNA generated as a result of active transcription or other 
endogenous processes may obscure the CasKAS signal at certain loci in some situations. 
We have explored this issue with sgRNAs targeting the promoter of the CD298/ATP1B3 
gene (Additional file 1: Supplementary Fig. 16), where we observe additional KAS signal 
well above the endogenous levels for dCas9 but not for the active Cas9; this suggests that 
dCas9, the association of which does not result in cuts to DNA, is likely able to reassoci-
ate with DNA if displaced by transcription (or other processes); in contrast, active Cas9 is 
not. Another minor limitation of the current in vitro protocol is that labeling is carried out 
on high molecular weight (HMW) DNA and samples must be sheared serially. We have 
explored using pre-sheared and end-repaired DNA (to minimize kethoxal labeling of Gs on 
sticky ends generated by sonication), with comparable results to using HMW DNA (Addi-
tional file 1: Supplementary Fig. 61); we anticipate that further optimization or using other 
approaches, such as enzymatic fragmentation, should allow the parallel high-throughput 
plate-based profiling of the specificity of very large numbers of sgRNAs.

In addition to being highly valuable for off-target profiling in vitro and in previously dif-
ficult to assay settings such as primary cells, we expect CasKAS to provide fruitful insights 
into the mechanisms and dynamics of in vivo CRISPR action (taking advantage of finely 
controllable CRISPR systems such as vfCRISPR [29]), and the influence of transcriptional, 
regulatory, and epigenetic and other functional genomic contexts on CRISPR activity.

Conclusions
We have presented CasKAS, a new and highly versatile method for profiling CRISPR pro-
tein activity genome-wide that takes advantage of the formation of single-stranded DNA 
structures during the association of CRISPR proteins with DNA. CasKAS can be used both 
in vitro and in vivo, and with both catalytically active and inactive versions of the CRISPR 
enzymes. When catalytically active CRISPR proteins are used, CasKAS not only maps the 
general location of on and off-targets, but also the precise positions of cleavage events. We 
expect CasKAS to become a highly useful, easily accessible tool for both mapping CRISPR 
off-targets and for tracking CRISPR activity in vivo in a wide variety of contexts.

Methods
Guide RNA sequences

Guide RNAs were obtained from IDT (“sgRNA #1” and “sgRNA #2”) or from Synthego 
(all others). The following sgRNA sequences were used in this study:

	 1.	 “sgRNA #1”: GCT​TAA​TTA​AGG​TAA​ACG​TC
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	 2.	 “sgRNA #2”: CCA​ACC​TGG​CGG​CTC​GTT​GG
	 3.	 “EMX1 Tsai”: GAG​TCC​GAG​CAG​AAG​AAG​AA
	 4.	 “VEGFA-site1”: GGG​TGG​GGG​GAG​TTT​GCT​CC
	 5.	 “Nanog-sg2”: GAT​CTC​TAG​TGG​GAA​GTT​TC
	 6.	 “Nanog-sg3”: GTC​TGT​AGA​AAG​AAT​GGA​AG
	 7.	 “CD2-1”: ACA​TGG​AAA​GCT​CAT​CTT​AG
	 8.	 “CD2-2”: TAC​ATG​GAA​AGC​TCA​TCT​TA
	 9.	 “CD90-1”: GCG​GAA​GAC​CCC​AGT​CCA​GG
	10.	 “CD90-2”: GTC​CAG​GTG​GGA​ACT​GGA​GC
	11.	 “CD45-1”: GTT​TGT​TCT​TAG​GGT​AAC​AG
	12.	 “CD45-2”: GAG​TTT​AAG​CCA​CAA​ATA​CA
	13.	 “CD298-1”: GAC​GGC​AGT​GAA​GGG​TGG​GA
	14.	 “CD298-2”: GAG​TAC​TCC​CCG​TAA​CGA​GG
	15.	 “safe-1”: GTG​CAT​TGT​TGG​TGG​TTG​TG
	16.	 “safe-2‘”: GCT​AAA​GTA​TCA​AAG​GGA​AT

Guide RNAs were dissolved to a concentration of 100 µM using nuclease-free 1 × TE 
buffer and stored at − 20 °C.

In vitro CasKAS

In vitro CasKAS experiments were executed as follows.
First, 1 µL of each synthetic sgRNA was incubated at room temperature with 1 µL of 

recombinant purified dCas9 (MCLab dCAS9B-200, at 20 µM, i.e., a total of 20 pmol) for 
20 min. The RNP was then incubated with 1 µg of gDNA at 37 °C for 10 min.

The KAS reaction was then carried out by adding 1 µL of 500  mM N3-kethoxal 
(ApeXBio A8793). DNA was immediately purified using the MinElute PCR Purification 
Kit (Qiagen 28,006) and eluted in 87.5 or 175 µL 25 mM K3BO3.

In vivo CasKAS

For in  vivo CasKAS experiments, HEK293T cells were seeded at 400,000 cells/well 
into a 6-well plate the day before RNP transfection. Media was exchanged 2  h before 
transfection. For each well, 6250  ng of Cas9 (MCLAB CAS9-200) or dCas9 (MCLAB 
dCAS9B-200) and 1200 ng sgRNA was complexed with CRISPRMAX (Thermo Fisher 
CMAX00008) reagent in Opti-MEM (Thermo Fisher 51,985,091) following manufac-
turer’s protocol. After incubation at room temperature for 15 min, the RNP solution was 
directly added to each well and gently mixed. The cells were incubated with the RNP 
complex for 14 h at 37 °C. To harvest and perform kethoxal labeling, media was removed 
and room temperature 1 × PBS was used to wash the cells. Cells were then dissociated 
with trypsin, trypsin was quenched with media, cells were pelleted at room tempera-
ture, and then resuspended in 100 µL of media supplemented with 5 mM N3-kethoxal 
(final concentration). Cells were incubated for 10 min at 37 °C with shaking at 500 rpm 
in a Thermomixer. Cells were then pelleted by centrifuging at 500 g for 5 min at 4  °C. 
Genomic DNA was then extracted using the Monarch gDNA Purification Kit (NEB 
T3010S) following the standard protocol but with elution using 175 µL 25 mM K3BO3 at 
pH 7.0.
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Click reaction, biotin pull down and library generation

The click reaction was carried out by combining 175 µL purified DNA, 5 µL 20 mM 
DBCO-PEG4-biotin (DMSO solution, Sigma 760,749), and 20 µL 10 × PBS in a final 
volume of 200 µL or 87.5 µL purified and sheared DNA, 2.5 µL 20 mM DBCO-PEG4-
biotin (DMSO solution, Sigma 760,749), and 10 µL 10 × PBS in a final volume of 100 
µL. The reaction was incubated at 37 °C for 90 min.

DNA was purified using AMPure XP beads (50 µL for a-100 µL reaction or 100 µL 
for a-200 µL reaction); beads were washed on a magnetic stand twice with 80% EtOH 
and eluted in 130 µL 25 mM K3BO3.

Purified DNA was then sheared on a Covaris E220 instrument down to ∼150–
400 bp size.

For streptavidin pulldown of biotin-labeled DNA, 10 µL of 10 mg/mL Dynabeads 
MyOne Streptavidin T1 beads (Life Technologies, 65,602) were separated on a mag-
netic stand, then washed with 300 µL of 1 × TWB (Tween Washing Buffer; 5  mM 
Tris–HCl pH 7.5; 0.5 mM EDTA; 1 M NaCl; 0.05% Tween 20). The beads were resus-
pended in 300 µL of 2 × Binding Buffer (10  mM Tris–HCl pH 7.5, 1  mM EDTA; 
2  M NaCl), the sonicated DNA was added (diluted to a final volume of 300 µL if 
necessary), and the beads were incubated for ≥ 15  min at room temperature on a 
rotator. After separation on a magnetic stand, the beads were washed with 300 µL 
of 1 × TWB, and heated at 55  °C in a Thermomixer with shaking for 2  min. After 
removal of the supernatant on a magnetic stand, the TWB wash and 55 °C incuba-
tion were repeated.

Final libraries were prepared on beads using the NEBNext Ultra II DNA Library 
Prep Kit (NEB, #E7645) as follows. End repair was carried out by resuspending beads 
in 50 µL 1 × EB buffer, and adding 3 µL NEB Ultra End Repair Enzyme and 7 µL NEB 
Ultra End Repair Enzyme, followed by incubation at 20 °C for 30 min (in a Thermo-
mixer, with shaking at 1000 rpm) and then at 65 °C for 30 min.

Adapters were ligated to DNA fragments by adding 30 µL Blunt Ligation mix, 1 µL 
Ligation Enhancer and 2.5 µL NEB Adapter, incubating at 20 °C for 20 min, adding 3 
µL USER enzyme, and incubating at 37 °C for 15 min (in a Thermomixer, with shak-
ing at 1000 rpm).

Beads were then separated on a magnetic stand, and washed with 300 µL TWB for 
2 min at 55 °C, 1000 rpm in a Thermomixer. After separation on a magnetic stand, 
beads were washed in 100 µL 0.1 × TE buffer, then resuspended in 15 µL 0.1 × TE 
buffer, and heated at 98 °C for 10 min.

For PCR, 5 µL of each of the i5 and i7 NEB Next sequencing adapters were added 
together with 25 µL 2 × NEB Ultra PCR Mater Mix. PCR was carried out with a 
98 °C incubation for 30 s and 12 cycles of 98 °C for 10 s, 65 °C for 30 s, and 72 °C for 
1 min, followed by incubation at 72 °C for 5 min.

Beads were separated on a magnetic stand, and the supernatant was cleaned up 
using 1.8 × AMPure XP beads.

Libraries were sequenced in a paired-end format on an Illumina NextSeq instru-
ment using NextSeq 500/550 high output kits (2 × 36 cycles).
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CasKAS data processing

Demultipexed fastq files were mapped to the hg38 assembly of the human genome or 
the mm10 version of the mouse genome as 2 × 36mers using Bowtie [30] with the fol-
lowing settings: -v 2 -k 2 -m 1 –best –strata -X 1000. Duplicate reads were removed 
using picard-tools (version 1.99).

Browser tracks generation, fragment length estimation, TSS enrichment calculations, 
and other analyses were carried out as previously described [31, 32] using custom-writ-
ten Python scripts (https://​github.​com/​georg​imari​nov/​Georg​iScri​pts). The refSeq set of 
annotations were used for evaluation of enrichment around TSSs.

CasKAS peak calling

Peak calling on in vitro binding datasets was carried out using version 2.1.0 of MACS2 
[33] with default settings. Peaks were then compared against the ENCODE set of “black-
listed” regions [34] to filter out likely artifacts.

Sequence analysis

Guide RNA off-target predictions were obtained from Cas-OFFinder [35].
Multiple sequence alignments of sgRNA sequences and their off-targets were gener-

ated using MUSCLE [36] and visualized using JalView [37].

Quantification

CasKAS occupancy quantification

For in vitro CasKAS datasets, we quantified occupancy by calculating Read-Per-Million 
(RPM) values for the ± 500-bp regions around off-target sites using the traditional RPM 
formula:

where |ROT| is the number of reads mapping to the ± 500-bp off-target region, and |R| is 
the total number of mapped reads.

For in vitro CasKAS datasets, we estimated occupancy levels as the difference between 
in vivo CasKAS RPM values and RPM values in a negative no-sgRNA control.

Cutting score calculation

The Cas9 cutting C-score was calculated as follows.
First, basepair-level RPM profiles for mapped read 5′ ends were generated separately 

for the forward and reverse strands. Then the C-score was calculated by multiplying the 
forward and reverse strand profiles (summed over a running window of 3 bp):

(1)RPMOT =
|ROT |

|R|

106

(2)C − scorec,i =

j=i+1

j=i−1

RPM+
c,j ×

j=i+1

j+i−1

RPM−
c,j

https://github.com/georgimarinov/GeorgiScripts
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where c,i indicate the coordinates by chromosome and position.

Amplicon sequencing

Amplicon sequencing was performed according to the xGen Amplicon Panels (IDT) 
protocol. A custom panel of primers was designed for predicted off-target sites for each 
sgRNA through IDT’s amplicon sequencing panel design service. Multiplex amplicon 
PCR was performed using 17.5  ng of genomic DNA for PCR. For amplification, the 
standard xGen Amplicon Panels protocol was followed with annealing at 63  °C and 
extension at 65 °C. Libraries were quantified using NEBNext Library Quantification Kit 
for Illumina (E7630S) and pooled for sequencing on a MiSeq.

Amplicon sequencing analysis

Amplicon sequencing reads were aligned against the hg38 version of the human genome 
using bwa mem [38] (version 0.7.5a) with default settings. Indel frequencies per basepair 
were calculated as the fraction of reads containing an indel over a given position using 
custom-written scripts.
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