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Abstract

Spatial omics provides unprecedented high-resolution
insights into molecular tissue compositions but poses sig-
nificant analytical challenges due to massive data vol-
umes, complex hierarchical spatial structures, and domain-
specific interpretive demands. To address these limitations,
we introduce OmicsNavigator, an LLM-driven multi-agent
system that autonomously distills expert-level biological in-
sights from raw spatial omics data without domain-specific
fine-tuning. OmicsNavigator encodes spatial data into
concise natural language summaries, enabling zero-shot
annotation of structural components, quantitative analy-
sis of pathological relevance, and semantic search of re-
gions of interest using free-form text queries. We evaluated
OmicsNavigator on multiple spatial omics studies of kidney
cohorts with different phenotypes and biomarker panels,
where OmicsNavigator achieved outstanding performances
in structural annotations, pathology assessments, and se-
mantic search across studies. OmicsNavigator offers a scal-
able, interpretable, and modality-agnostic solution for spa-
tial omics analysis.

1. Introduction

Spatial omics, including spatial transcriptomics and pro-
teomics, is reshaping biological research by enabling
high-resolution spatially-resolved mapping of the molec-
ular composition of entire tissues at previously unattain-
able scales[12, 37]. Platforms such as 10x Visium[25],
MERFISH[4], Xenium[19], CODEX[5], and MIBI-TOF[6]

now routinely generate terabytes of data from sequenc-
ing or imaging experiments with multiplexed gene or pro-
tein expression measurements, thereby providing unprece-
dented opportunities for in situ investigations of develop-
mental processes, immune responses, and disease progres-
sion [10, 40].

Yet the very richness that makes spatial omics attractive
also presents substantial analytical challenges: (i) the sheer
data volume renders manual inspection infeasible [33]; (ii)
the high dimensionality of spatial omics data, encompassing
numerous protein biomarker or gene transcripts, lacks an in-
tuitive representation [34]; (iii) structures that are inherently
hierarchical, ranging from subcellular protein assemblies
and multicellular structures to centimeter-scale anatomical
regions, require different interpretation and analysis tools
that are customized for the spatial scale and resolution [35];
and (iv) translating statistical patterns into mechanistic in-
sight still relies heavily on domain knowledge from human
experts [28].

Concurrently, large language models (LLMs) have rede-
fined the state-of-the-art in natural language understanding
and generation across scientific disciplines [14]. Several
variants focusing on biomedical knowledge have demon-
strated expert-level performance on question-answering
and evidence retrieval [18, 22–24]. Multimodal vi-
sion–language models integrating radiology or pathology
images with free-text reasoning have shown capabilities
in automatic report generation, captioning, and interactive
querying [1, 9, 17, 32, 39]. In the realm of single-cell
and spatial omics, foundation models directly trained on
massive amounts of experimental measurements with self-
supervised learning strategies [21, 29, 38] have demon-
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Figure 1. Overview and capabilities of OmicsNavigator.

strated improvements across diverse downstream tasks,
through these methods use customized architectures and re-
quire downstream fine-tuning, which limits their accessi-
bility and generalizability. In parallel, initial applications
of LLM-based tools in single-cell and spatial omics have
demonstrated strong performances in tasks such as cell-type
annotation [8, 13, 29], agentic multi-step analysis pipelines
[30], and zero-shot reasoning for single-cell readouts [20].
These successes hint at a broader opportunity: if spatial
omics could be rendered in a language-native form, one
might harness the emergent reasoning capabilities of foun-
dation models—without any domain-specific fine-tuning—
to accelerate data exploration and biological discovery.

However, this opportunity remains largely untapped.
Most current LLM-based bioinformatics tools employ
LLMs to support routine tasks—such as literature sum-
marization, metadata normalization, or basic question
answering—yet lack the capacity to directly work with raw
omics data in its specific biological or pathological con-
texts. This limitation stems in part from the complex and
diverse data formats spatial omics measurements take. Raw
sequencing and imaging outputs, as well as dense numerical
arrays of cellular tables after preprocessing, are inherently
incompatible with the text-only language models without
tailed modality-specific embedding tools. Existing attempts
reduce the complexity of omics data by representing it as
sequences of gene symbols to enable LLM querying [13] or
task-specific fine-tuning [20]. Yet, these abstractions have
not yet been able to capture the spatial topology and biolog-
ical contexts essential for robust inference.

To bridge this gap, we present OmicsNavigator, an LLM-
driven multi-agent system that autonomously ingests spa-
tial omics data and distills expert-level biological insights
without requiring domain-specific fine-tuning (Figure 1).
OmicsNavigator consists of multiple interacting agents that
share information through a common memory module.
These individual agents carry out tasks including curation
of study-specific contexts, transforming spatial omics data

to free-form text, biological reasoning for annotations and
pathological relevance analysis. We demonstrate the capa-
bilities of OmicsNavigator on a range of tasks including
zero-shot annotations, quantitative analysis of disease rele-
vance, semantic search, and data-driven discovery of spatial
signatures.

Our key contributions are as follows:
• We introduce the first general-purpose omics-to-text en-

coding mechanism that maps high-dimensional spatial
omics data into representations compatible with the rea-
soning capabilities of LLMs;

• We develop a LLM-driven multi-agent system that pro-
duces qualitative and quantitative insights from spatial
omics inputs in a zero-shot manner;

• We propose a language-native retrieval framework that
accurately identifies canonical structures and disease-
relevant hot spots from multiple large-scale datasets,
reaching outstanding retrieval accuracies, and offering a
lightweight, interpretable and study-agnostic assistant for
spatial biology.

2. Methods
2.1. OmicsNavigator
OmicsNavigator is an LLM-driven multi-agent system de-
signed to perform biological reasoning on arbitrary regions
of interest (ROIs) from spatial omics studies. It con-
structs background knowledge and ROI-specific informa-
tion as natural language representations, followed by rea-
soning over and interpreting the biological contents and sig-
nificance of ROIs. An overview of the internal workflow on
an example ROI sampled from a kidney region is shown in
Figure 2.

2.1.1. Curation of study-specific contexts
While LLMs have demonstrated remarkable success in ad-
dressing general biomedical questions[23, 24], our experi-
ments show that they often struggle with domain-specific,
research-level questions in the absence of adequate back-
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Figure 2. Internal workflow of OmicsNavigator: For a tissue region profiled with spatial omics experiments, the ContextCurator first
curates biological contexts regarding the tissue (A) and disease (B) according to metadata including tissue type, phenotype, biomarker
panel, etc. For an arbitrary ROI in the region (C), its information—cell locations, types, morphology, and biomarker expression, among
others—is extracted and assembled into a natural language description (D) by OmicsEncoder. Guided by the contexts, the OmicsAnnotator
and PathologyScorer annotate the ROI (E) and interpret its disease relevance (F). All contexts, ROI descriptions and interpretations are
indexed and stored in the memory module for downstream retrieval and analysis tasks.

ground information. To address this limitation and ensure
applicability across domains, OmicsNavigator employs an
LLM-powered agent—referred to as “ContextCurator”—to
curate domain-specific contexts of the specific tissue and
disease using metadata of the patient and the tissue sample
(Figure 2A-B).

This process involves interactive conversation with the
agent, leveraging metadata including study background, tis-
sue type, disease phenotype of the patient, and all biomark-
ers measured in the omics experiment. These inputs are
used to generate tissue- and disease-specific contexts that
guide downstream reasoning. In addition, information re-
garding the biomarkers can be optionally enhanced by ref-
erencing external knowledge bases, such as Human Pro-
tein Atlas[26]), which has proven highly effective in our
experiments. Importantly, these contexts are generated
once, stored in the memory module of OmicsNavigator, and
reused across all ROIs from the same omics experiment.

2.1.2. Omics-to-text encoding
To address the modality gap between spatial omics data and
the textual input required by LLMs, we introduce a transfor-
mation module called “OmicsEncoder”, which converts an
arbitrary ROI into a natural language representation. This
module is inspired by the analytical workflows of human
experts, wherein key information of the ROI, such as cel-
lular composition and differentially-expressed biomarkers,
are extracted and assembled.

This process begins by segmenting and characterizing
all cells within the tissue sample. For cells within the
queried ROI, features such as biomarker expression, mor-
phology, and/or cell type are extracted and aggregated to de-
fine the ROI-specific features. These features are then com-
pared against cellular features randomly sampled from the
full region for additional normalization. Key distinguish-
ing characteristics—including top differentially expressed
biomarkers, distinctive morphological patterns, and pre-
dominant cell types—are extracted and summarized in nat-
ural language (Figure 2D). The resulting textual description
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includes sections on highly expressed biomarkers, major
cell types, spatial localization patterns and other informa-
tive cues that closely resemble the elements typically used
by human experts in biological reasoning.

2.1.3. LLM-aided ROI annotation
OmicsNavigator then employs an LLM-powered agent,
“OmicsAnnotator”, to interpret the contents of the queried
ROI based on its natural language description and the as-
sociated contexts (Figure 2E). In our experiments, the
agent was explicitly prompted to generate annotations for
the major multicellular structures or spatial domains in the
region—a task extensively studied in the spatial omics anal-
ysis. This annotation task can be viewed as a specialized
form of visual question answering (VQA), where the “vi-
sual” modality is replaced by textual encodings of spatial
omics data. Extending this framework to support more di-
verse forms of content-based interpretation will be explored
in future work.

2.1.4. Inference of disease relevance
A natural extension of the LLM-aided ROI interpretation
is to infer its relevance to patient-specific clinical charac-
teristics, such as disease state. To this end, we introduce
another LLM-powered agent, “PathologyScorer”, which in-
fers disease relevance using the queried ROI’s textual de-
scription, structural interpretation generated by “OmicsAn-
notator”, and the corresponding tissue- and disease-specific
contexts (Figure 2F). Notably, in addition to generating
a natural language explanation, the agent is explicitly in-
structed to output a quantitative relevance score, enabling
cross-ROI comparisons of disease relevance.

2.2. Coupling existing unsupervised annotation
tools with OmicsNavigator

In addition to annotating arbitrarily selected ROIs, Omic-
sNavigator seamlessly integrate with existing computa-
tional tools[15, 27, 36] that perform unsupervised annota-
tions on spatial omics data (Figure 5). Using cell-level
unsupervised annotations produced by an arbitrary external
tool, we can identify and extract ROIs enriched with cells
from specific clusters. OmicsNavigator can then be applied
to interpret these cluster-specific ROIs. By further enumer-
ating and aggregating individual interpretations of cluster-
specific ROIs, a consensus annotation can be derived for
each cluster. This approach ensures comprehensive cover-
age of all major tissue components discovered by the ex-
ternal tool, while also enabling cross-region integration or
comparison of clusters.

2.3. Semantic search
Beyond annotation, OmicsNavigator also opens the path to
semantic search by linking spatial omics with natural lan-
guage descriptions and interpretations (Figure 6A). To con-

struct the searchable text corpus, we enumerate all ROIs
within the region, with each ROI encoded based on its fea-
ture. Subsequently, these ROIs are grouped using a multi-
stage clustering pipeline, with in total 40 to 50 representa-
tives selected from all clusters, termed “key ROIs”. This
approach is inspired by prior work on content-based image
retrieval techniques[3, 11], where clustering and pruning
techniques are used to reduce the search space of candidate
patches. Each key ROI is analyzed by OmicsNavigator, and
the resulting textual interpretations are encoded and stored
in the memory module to support subsequent semantic re-
trieval.

During a semantic search, an input query text is encoded
and compared against entries in the memory. Pairwise dis-
tances and exact text matches are computed to identify the
top hits among the key ROIs. These hits serve as anchors
to compute the median distances between all ROI features
and the anchor features. Finally, the most relevant ROIs
according to median distance to anchors are retrieved and
visualized for further analysis.

3. Dataset

3.1. Diabetic kidney disease (DKD) dataset
We used a previously published CODEX[5] dataset of kid-
ney samples from diabetic patients [16], hereinafter referred
to as the DKD dataset. A total of 17 regions compris-
ing 137,000 cells were curated for OmicsNavigator experi-
ments. These regions span multiple stages of diabetic kid-
ney disease (early to stage 3) and exhibit a broad spectrum
of disease-associated histological changes.

Each region in the DKD dataset was preprocessed using
a standard pipeline involving cell segmentation, biomarker
integration, and unsupervised cell typing via Leiden clus-
tering, resulting in 11 identified cell types, including
tubular, endothelial, immune, and other cells. Pathol-
ogist annotations of five major anatomical structures—
proximal tubules, distal tubules, glomeruli, blood vessels,
and interstitium—were used to evaluate OmicsNavigator’s
zero-shot annotation accuracy in subsequent experiments.

3.2. Transplant rejection (TR) dataset
We adapted a different kidney dataset [2] comprising sam-
ples profiled using CODEX from 5 normal and 7 trans-
plant rejection kidney regions, hereinafter denoted as the
TR dataset. In total around 350,000 cells were identified
and classified after the same preprocessing pipeline, yield-
ing 20 different cell types including immune, tubular, fi-
broblast, and smooth muscle cells. Importantly, the TR
dataset was profiled using a different biomarker panel, with
only 7 of the 52 markers (13%) overlapping with the DKD
dataset. As demonstrated in the results below, OmicsNavi-
gator is agnostic to biomarker panels and can perform joint
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Figure 3. Two kidney regions from the DKD dataset with ROIs annotated by OmicsNavigator. (A) Tissue section from a patient with
early-stage DKD. Three ROIs (1–3), marked by white boxes, are annotated for structural components, with key sections in the textual
interpretations from OmicsNavigator shown. All annotations aligned with pathologist evaluations. (B) Tissue section from a patient with
late-stage (IIB) DKD. Three ROIs (4–6) are annotated for structural components and disease relevance by OmicsNavigator. Varying levels
of disease-associated changes were observed, accurately captured by OmicsNavigator and quantified using relevance scores.

analysis of both studies without any adjustments.

3.3. Kidney allograft rejection (KAR) dataset

Another dataset consists of 8 T cell-mediated and 8
antibody-mediated rejection kidney cases, referred to as the
KAR dataset[7], was used in parallel to test the general-
izability of OmicsNavigator. This dataset, similarly, used
a different biomarker panel and contained around 558,000
cells of 13 distinct cell types, with a particular focus on im-
mune populations within kidney structures.

All three datasets were collected from different insti-
tutions and used customized biomarker panels. Cell seg-

mentation and annotations were performed independently,
therefore yielding non-overlapping sets of cell types. Omic-
sNavigator operates on regions from each study in an inde-
pendent manner, thereby minimizing the influence of poten-
tial batch effects and panel discrepancy. The interpretations
and semantic search results are directly comparable across
studies, thanks to their language-native format.
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Figure 4. Accuracy of annotations from OmicsNavigator: We ran-
domly sampled 500 ROIs around pathologist-annotated cells and
prompted OmicsNavigator to generate up to two guesses for an-
notating components. OmicsNavigator does not have access to the
ground truth classes. (A) Per-class and average accuracy for top-1
and top-2 guesses, with baseline accuracy of randomly guessing
ground truth classes shown as dashed lines. (B) Confusion matrix
comparing ground truth classes to top-1 guesses from OmicsNavi-
gator. Notable confusion between the blood vessel and interstitium
classes arises due to overlapping signature biomarkers and ambi-
guities in class definitions.

4. Results

4.1. ROI interpretation with OmicsNavigator

To illustrate how OmicsNavigator performs ROI-level inter-
pretation, we present two representative examples of differ-
ent disease stages from the DKD dataset. Region shown in
Figure 3A is sampled from a patient with early-stage DKD,
while Region in Figure 3B is sampled from a late-stage
(IIB) disease patient. For each region, several ROIs were
selected and annotated using OmicsNavigator in a zero-
shot manner, which generates textual interpretations on the
ROIs’ structural components and assesses their disease rel-

evance. The outputs closely match expert pathologist eval-
uations, correctly identifying structures such as glomeruli
and distal convoluted tubules.

Furthermore, OmicsNavigator captures disease-
associated alterations in ROIs. Analysis on the three ROIs
sampled from the late-stage disease region show varying
levels of disease relevance. OmicsNavigator highlights
an ROI heavily infiltrated by immune cells (No. 6 in
Figure 3B), evidenced by the strong CD45 expression,
as well as the structural annotation of “inflammatory
domains“. In addition, OmicsNavigator also identifies
a glomerulus-associated ROI in the region (No. 5 in
Figure 3B) and suggests its disease relevance indicated
by glomerular basement membrane. These observations
demonstrate the outstanding capabilities of OmicsNavi-
gator in identifying and highlighting disease-associated
signals in an interpretable and context-aware fashion.

We further quantitatively evaluated OmicsNavigator’s
annotation accuracy by randomly sampling 500 ROIs sur-
rounding pathologist-annotated cells. For each ROI, Omic-
sNavigator was prompted to generate up to two candidate
annotations without access to ground truth labels. The re-
sults show that OmicsNavigator substantially outperforms
random baselines, achieving outstanding top-1 and top-2
accuracies of 56% and 75%, respectively, across various tis-
sue structures (Figure 4A). Analysis of the confusion ma-
trix between ground truth classes and the top-1 guess by
OmicsNavigator (Figure 4B) suggests ambiguity between
the class of blood vessel and interstitium, which largely
stems from overlapping signature biomarkers (i.e., aSMA,
CollagenIV). In such cases, allowing multiple guesses with
justifications—a unique advantage offered by LLM-based
approach—provides substantial help.

Overall, OmicsNavigator demonstrates exceptional ca-
pability in ROI-level interpretation by accurately identify-
ing structural components and assessing disease relevance.

4.2. Unsupervised cluster annotation with Omic-
sNavigator

OmicsNavigator can be seamlessly integrated with existing
computational biology tools that perform unsupervised an-
notations of spatial omics data [15, 27, 36]. As illustrated in
Figure 5A-B, we analyzed two representative tissue regions
independently using an existing unsupervised annotation
tools developed for spatial omics (i.e., SCGP[36]). Such
class of tools leverage a variety of machine learning and
deep learning approaches to identify multicellular spatial
domains based on cellular-level profiles. However, most of
them produce unsupervised outputs that require manual in-
spection and annotation for further interpretation. In studies
involving multiple regions, clusters identified across runs
(e.g., on different regions, batches, or case/control groups)
will need to be matched and integrated for larger-scale anal-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2025. ; https://doi.org/10.1101/2025.07.21.665821doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.21.665821
http://creativecommons.org/licenses/by/4.0/


Figure 5. Coupling unsupervised annotation tools with OmicsNav-
igator. Two randomly selected regions from the DKD dataset (A)
were analyzed using an existing unsupervised annotation tool to
identify tissue structures / spatial domains, marked by different
colors (B). OmicsNavigator can be used to further annotate these
unsupervised clusters (C) by sampling subsets of cells and aggre-
gating their interpretations. Clusters across different regions were
annotated and matched (D), revealing common structures (e.g.,
glomeruli in green and pink) and region-specific domain (e.g., in-
flammatory domain in orange).

yses. OmicsNavigator can streamline these post hoc anno-
tation steps through detailed biological reasoning and inter-

pretations, which typically rely on domain expertise from
human experts.

In practice, we employed a technique similar to self-
consistency decoding [31]. For each unsupervised clus-
ter, representative subsets of cells were selected, and ROIs
enriched with these cells—referred to as cluster-specific
ROIs—were defined. OmicsNavigator was used to inter-
pret and annotate multiple cluster-specific ROIs from the
same cluster, and the resulting interpretations were further
aggregated to form a consensus annotation. An example is
shown in Figure 5C, where four subsets of cells are anno-
tated independently and aggregated into a consensus anno-
tation. Notably, the consensus annotation remained accu-
rate even though the four cluster-specific ROI annotations
were inconsistent. This procedure improves the overall ro-
bustness and accuracy of OmicsNavigator by leveraging di-
verse samples of cluster-specific ROIs, mitigating the im-
pact of noise and errors in individual annotations. In our
experiments, OmicsNavigator produced only two mistakes
in its consensus annotations across 92 clusters identified in
the DKD dataset.

Furthermore, the language-native outputs of OmicsNav-
igator ensure that post hoc annotations are naturally consis-
tent across regions, allowing clusters from different regions
to be matched. As shown in Figure 5D, OmicsNavigator
identifies both common tissue structures (e.g., glomeruli in
green and pink) and region-specific domain (e.g., inflamma-
tory domain in orange) across the two regions. In practice,
we were able to identify common clusters across all 17 re-
gions of the DKD dataset, enabling comparative analyses on
the same structure to reveal disease-associated alterations.

In summary, OmicsNavigator complements existing un-
supervised annotation tools by providing interpretable and
consistent post hoc annotations of clusters, facilitating
downstream integration and cross-region analyses.

4.3. Semantic search with OmicsNavigator

OmicsNavigator enables text-based semantic search over
spatial omics regions by linking ROIs to natural language
descriptions. As illustrated in Figure 6A, the process be-
gins by identifying representative ROIs of the subject re-
gion through a multi-stage unsupervised clustering pipeline
that leverages ROI features and coordinates. These repre-
sentatives, termed key ROIs, are then analyzed for their bi-
ological contents and disease relevance using OmicsNavi-
gator. Textual results of the interpretations are converted
and encoded into searchable entries. Once entries from
all key ROIs are indexed and stored, OmicsNavigator can
retrieve semantically similar key ROIs, or hits, from the
memory When provided with a free-form text query (e.g.,
“Glomeruli”, “Immune-infiltrated interstitium”). These hits
serve as anchors to identify relevant ROIs across the entire
tissue region, based on feature distances.
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Figure 6. OmicsNavigator enables semantic search using natural language queries. (A) In a semantic search pipeline, key ROIs are defined
through multi-stage unsupervised clustering and are subsequently interpreted using OmicsAnnotator/PathologyScorer. For a given text
query, top hits in key ROIs are identified based on semantic similarities and subsequently used as anchors to retrieve all relevant ROIs.
(B) Results of searching for the kidney structure “Glomeruli” in example regions from the DKD dataset. (C) Quantitative metrics of
retrieval performance across the whole DKD dataset, achieving an overall precision of 0.97 and a recall of 0.89 when counting top 60 ROIs
per region. Shaded areas in the mAP@k plot represent the 90% confidence interval. (D-E) Results of searching for the same keyword
“Glomeruli” in the TR and KAR datasets, both achieving outstanding visual alignment. Note that colors represent different biomarkers in
these three datasets. (F) Results of searching for the kidney structure “Distal convoluted tubules” in the DKD dataset. (G) Quantitative
metrics of retrieval performance, with an overall precision of 0.93 when counting top 60 ROIs. Shaded areas in the mAP@k plot represent
the 90% confidence interval. (H-I) Results of searching for “Distal convoluted tubules” in the TR and KAR datasets, both achieving
outstanding visual alignment.
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The design of key ROIs as an intermediate step offers
two major advantages. First, by focusing on representative
ROIs, this strategy drastically reduces the cost and time re-
quired to run OmicsNavigator while maintaining compre-
hensive search coverage. Second, this approach is error-
tolerant: final search results are calculated based on me-
dian feature distances to anchors (i.e., hits). Minor mis-
takes from OmicsNavigator when analyzing key ROIs (e.g.,
the white box marked by arrow in Figure 6A) have minimal
impact on the search results.

We assessed our approach across all three studies com-
prising samples of different disease phenotypes, tissue
sources, batches, biomarker panels, and cell type com-
positions, where OmicsNavigator achieved robust perfor-
mance in all scenarios. For instance, glomerular structures
were consistently retrieved with high precision and recall
across the DKD, TR, and KAR datasets (Figure 6B,D,E),
despite considerable inter-dataset heterogeneity. Quanti-
tatively, OmicsNavigator achieved strong retrieval metrics
(Figure 6C): when counting top 60 ROIs, it attained a pre-
cision of 0.97 and a recall of 0.89, calculated as the amount
of individual glomerulus identified in the search results.
Similarly, OmicsNavigator demonstrated outstanding per-
formances in retrieving the kidney structure of distal convo-
luted tubules (Figure 6F,H,I), with high quantitative met-
rics (Figure 6G).

These results highlight the potential of OmicsNaviga-
tor’s language-native format to bridge the gap between spa-
tial omics data and intuitive, text-based exploration, en-
abling precise and efficient retrieval of arbitrary regions.

4.4. Exploration of disease-relevant spatial patterns
with OmicsNavigator

In addition to the identification and annotation of struc-
tures, investigation of disease-associated spatial patterns
is another pivotal component of spatial omics data anal-
ysis, which could provide critical insights into the mech-
anisms underlying disease onset, progression, and prog-
nosis. While substantial amount of biological knowledge
has been accumulated over the years, computational analy-
sis of spatial omics data that autonomously makes use of
this wealth of knowledge remains an under-explored di-
rection. By leveraging LLM-driven agents equipped with
disease-specific contexts, OmicsNavigator bridges this gap,
enabling disease-aware exploration of spatial patterns with
augmentation from existing biological knowledge.

In a targeted setting, semantic search can be used to re-
trieve ROIs of known pathological significance. For in-
stance, using the keyword “Immune aggregates”, Omic-
sNavigator successfully retrieved ROIs enriched for im-
mune cells and immune-related biomarkers including
CD45, CD68, and CD3e Figure 7A. The distributions of
these ROIs closely reflected region-level phenotypes asso-

ciated with inflammation levels and disease stages. Vi-
sualizations of contrasting regions from each study fur-
ther demonstrate OmicsNavigator’s ability to capture mean-
ingful inter-sample differences. Very importantly, Omic-
sNavigator does not show signs of hallucinating findings in
early-stage or mild disease cases, as indicated by the low
number of hits and retrieved ROIs in corresponding region
groups across all studies. This ensures that the outputs of
OmicsNavigator remain faithful to the underlying data and
prevent over-interpretation. Broadly, this approach holds
strong potential in scenarios where analysts could identify
structures of known pathological significance, such as lo-
calizing tertiary lymphoid structures and necrotic cores in
tumor microenvironments.

Beyond predefined queries, OmicsNavigator can also
be used to explore disease-relevant spatial patterns in
a data-driven manner Figure 7B. By ranking key ROIs
based on their disease relevance scores—automatically
assigned by PathologyScorer, an LLM agent equipped
with disease-specific contexts—high-scoring regions can
be selected and analyzed, enabling unbiased discovery of
pathologically-relevant spatial signatures. Quantitatively,
we observed similar trends, where OmicsNavigator iden-
tifies most highly disease-relevant ROIs in severe disease
cases, avoiding over-interpretation in mild cases. Through
further clustering and summarizing these highly disease-
relevant ROIs, consensus patterns can be identified, each
representing a distinct mode of tissue alteration. In the ex-
amples shown in Figure 7B, five major disease-associated
alterations are identified and localized in the regions with-
out any human guidance.

Collectively, OmicsNavigator opens new avenues for
contextualizing and analyzing spatial omics data by in-
tegrating existing biological knowledge. It enables both
hypothesis-driven and unbiased discovery approaches to
study spatial omics data.

5. Discussion
We present a novel LLM-driven multi-agent system that au-
tonomously ingests spatial omics data and derives expert-
level biological insights without requiring domain-specific
fine-tuning. OmicsNavigator effectively encodes arbi-
trary ROIs from spatial omics studies into text represen-
tations, enabling LLM-driven agents to reason over high-
dimensional omics measurements. Evaluated across three
spatial omics datasets of different kidney diseases, Omic-
sNavigator excels in tasks such as structural annotations and
pathology assessments.

Beyond annotations, the language-native format of
OmicsNavigator’s outputs greatly expands its applicabil-
ity in downstream tasks. We demonstrated applications in-
cluding semantic search, identification of disease-relevant
hotspots, and summarization of spatial patterns. More ver-
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     **Interstitial Fibrosis and ECM Remodeling**:

Elevated α-SMA and Collagen IV expression, along with the presence of 
fibroblasts (aSMA+ Vimentin+), indicate interstitial fibrosis. ECM deposition is a 
hallmark feature, supported by structural remodeling metrics such as sparse 
cellular organization, elongated cell morphology, and moderate enrichment of 
mesenchymal markers like Vimentin.



     **Glomerular Changes**: 
Several ROIs show evidence of podocyte injury (Podoplanin+, CD34+), 
mesangial expansion (Collagen IV+, Vimentin+), and glomerular basement 
membrane thickening (Collagen IV+). Podocyte detachment and dysfunction are 
inferred from morphological metrics, such as large cell size and elongated shapes.



     **Inflammatory Cell Infiltration**: 
There is a strong presence of immune cells, including macrophages (CD68+), T 
cells (CD3e+, CD4+, CD8+), and B cells (CD79a+), forming immune cell 
aggregates. Spatial metrics—such as high local density, short intercellular 
distances, and organized clustering—further support immune activation and 
inflammatory responses.
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     **Inflammatory Cell Infiltration**:

High expression of immune cell markers **CD45**, **CD68**, and **CD11b**, 
indicating significant monocyte, macrophage, and lymphocyte presence in the 
interstitial space. This aligns with tubulointerstitial changes typical of DKD, where 
inflammation contributes to nephron loss and fibrosis.



     **Interstitial Fibrosis:**: 
SElevated expression of **aSMA** and **Collagen IV** across ROIs suggests 
widespread fibroblast activation and extracellular matrix deposition, which are 
hallmarks of interstitial fibrosis in DKD.
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Figure 7. Exploration of disease-relevant spatial patterns with OmicsNavigator. (A) Targeted retrieval using semantic search. ROIs
matching the keyword “Immune aggregates” were retrieved across three datasets. Retrieved ROIs exhibited high expression of immune-
related biomarkers (e.g., CD45, CD68, CD3e), and the abundance of retrieved ROIs closely reflected region-level inflammation levels and
disease stages (right panels). For each dataset, two contrasting regions are shown (left and middle panels). (B) Untargeted, data-driven
exploration with OmicsNavigator. ROIs with high disease relevance scores—automatically inferred by OmicsNavigator—were retrieved
and summarized to curate disease-associated patterns. Visualizations from two late-stage disease samples illustrate how retrieved ROIs
capture diverse modes of disease-associated tissue alteration, with the number of high-relevance ROIs reflecting disease severity across
datasets.

satile usages of OmicsNavigator’s textual interpretations
will be explored in subsequent works. Notably, Omic-
sNavigator’s interpretability and modularity make it espe-
cially suitable for human-in-the-loop analysis, where Omic-
sNavigator, applied in conjunction with other LLM-driven
tools, can serve as co-pilot for tasks such as guided tis-
sue annotation, cross-condition comparative analysis, and
hypothesis generation/refinement for disease-relevant stud-
ies. Additionally, OmicsNavigator could be deployed as a
first-pass analysis tool for pathological assessment in high-
throughput settings. It can autonomously identify and lo-
calize major pathological signatures to prioritize findings
for further human evaluations.

Despite these advances and promises, several limitations
remain. First, OmicsNavigator relies heavily on tissue-
specific and disease-specific contexts, which are curated
from the prior knowledge of LLMs and/or external refer-
ence databases. In highly specialized or emerging domains,
the scarcity of existing knowledge may constrain its per-
formance. Second, OmicsNavigator’s outputs may exhibit
uncertainty or mistakes. While error-tolerant mechanisms
have been introduced in some downstream tasks in this
work, the supervision of potentially erroneous outputs—
especially to mitigate risks in clinical or research settings—
remains a critical focus for future work. Last but not
the least, the omics-to-text transformation in OmicsNaviga-
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tor may lead to compression-related information loss, po-
tentially omitting subtle but biologically important details.
Future work could explore hybrid architectures that com-
bine text-based reasoning with spatially-aware modeling or
vision-language frameworks to better capture spatial fea-
tures while maintaining interpretability.

Taken together, OmicsNavigator is an autonomous, scal-
able, interpretable, and versatile approach that derives bi-
ological insights from spatial omics data, with strong po-
tential to advance both research and clinical applications of
spatial omics studies.

Data and code availability
All codes and data used in this study are publicly
available at https://github.com/yyli-leo/
OmicsAnnotator.
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